ECONOMIC VALUE OF WATER IN ALTERNATIVE USES IN THE SOUTH SASKATCHEWAN (ALBERTA AND SASKATCHEWAN PORTIONS) RIVER BASIN

Suren Kulshreshtha Professor of Agricultural Economics

With Contributions from

Tony Samarawickrema Robert Bewer Amanda Neall Research Assistants

REPORT PREPARED FOR THE PRAIRIE PROVINCES WATER BOARD ENVIRONMENT CANADA REGINA

DEPARTMENT OF AGRICULTURAL ECONOMICS UNIVERSITY OF SASKATCHEWAN SASKATOON, SK., S7N 5A8

RESEARCH REPORT

MARCH 2006

TABLE OF CONTENTS

Chapter No.	Page No.
TABLE OF CONTENTS	i
LIST OF TABLES	vii
LIST OF FIGURES	xiii
ACKNOWLEDGEMENTS	XV
1. INTRODUCTION	
1.1 Background	1
1.2 Need for the Study	
1.3 Objectives of the Study	2
1.4 Scope of the Study	
1.5 Organization of the Report	
PART ONE	

BACKGROUND INFORMATION

2. PHYSICAL AND ECONOMIC PROFILE OF THE SSRB	7
2.1 Location and Description of the Basin	7
2.2 Sub-Basins	8
2.3 Population Base	9
2.4 Major Industries 1	0
2.5 Agricultural Land Use and Irrigation	2
2.6 Other Primary Insustries 1	5
2.6.1 Mining Activities1	5
2.6.2 Forestry1	6
2.7 Manufacturing1	6
2.8 Power Generation	6
2.9 Service Sectors	6
2.10 Summary 1	8
3. WATER USE IN BASIN BY SUB-BASINS 2	21
3.1 Nomenclature Related to Water Use	!1
3.2 Major Water Uses in the Basin	!1
3.3 Irrigation Water Use	!4
3.4 Other Agricultural Water Uses	24
3.5 Community/Municipal Water Use	25
3.6 Mining Water Use	26
3.7 Power Generation Water Use by Sub-Basin	28
3.8 Other Water Uses Within the Basin	28
3.8.1 Industrial Water Use	29

Chapter No.

3.8 Sum	mary	32
	PART TWO	
	VALUATION OF WATER	
4. CONCE	PTUAL FRAMEWORK	37
4.1Conce	ept of Values	37
4.2 Typo	logy of Values in the Context of Allocation of Water	37
4.3 Appr	oaches to Valuation of Water	39
4.4 Meas	surement of Values through Concept of Producer and Consumer Surplus	41
4.5 Sum	mary	42
5. VALUE	OF WATER FOR IRRIGATION	
5.1 Intro	duction	43
5.2 Irriga	ation in the SSRB	43
5.3 Conc	ceptual Valuation Methodology	44
5.3.1	Concept of Marginal Value Product of Water	44
5.3.2	Concept of Average Value of Water	45
5.4 Estin	nation of Value of Water	46
5.4.1	Estimation of Marginal Value of Water	46
5.4.2	Estimation of Average Value of Water	47
5.5 Emp	irical Methodology for Valuation of Irrigation Water	47
5.5.1	Overview of the Methodology	47
5.5.2	Disaggregation of the SSRB into Sub-Basins	48
5.5.3	Irrigated Crop Mix	50
5.5.4	Distribution of Irrigated Crops by Method of Water Delivery (Irrigation	
Techn	iology)	50
5.6 Estin	nation of Marginal Value of Water	52
5.6.1	Overview of the Methodology	52
5.6.2	Selection of Crops for Estimation of Marginal Value	53
5.6.3	Crop Yield Production Functions for Irrigation.	
5.6.4	Standard Irrigation Requirement Calculation	
5.6.5	Total Yield under Standard Water Requirements and Total Revenue	
Calcul	lation	
5.6.6	Marginal Irrigation Cost and Net Revenue at Standard Irrigation	
Requi	rement	56
5.6.7	Estimation of Marginal Value	57
5.7 Aver	rage Value of Water	64
5.7.1	Methodology	64
5.7.2	Data Requirements for Estimation of Average Value of Irrigation Water	66

Chapter N	0.	Page No.
5.7.3	Estimated Net Returns from Irrigation by Crops	
5.7.4	Estimated Average Value of Irrigation Water by Sub-Basins	
5.8 Tota	Economic Value of Irrigation Water	
6. VALUE	FOR OTHER AGRICULTURE USES	
6.1 Drou	ght Mitigation	
6.1.1	Concept of Benefit	
6.1.2	Methodology for Estimation	
6.1.3	Estimated Value of Irrigation Water for Drought Proofing	82
6.2 Live	stock Production	83
6.3 Valu	e of Water in Livestock	85
6.3.1	Methodology	85
6.3.2	Estimated Value	
6.4 Farm	Domestic Water Use	89
7. VALUE	OF WATER FOR SELECTED NON-AGRICULTURAL	
WITHDR	AWAL USES	
7.1 Ther	mal Power Generation	
7.1.1	Introduction	
7.1.2	Value of Water in Thermal Power	
7.2 Valu	e of Water for Municipal Uses	
7.2.1	Introduction	
7.2.2	Review of Literature	
7.3 Valu	e of Water for Industrial Purposes	
7.4 Valu	e of Water for Mining	
8. VALUE	OF WATER FOR IN-SITU USES	
8.1 Valu	e of Water in Hydroelectric Power Generation	
8.1.1	Introduction	
8.1.2	Conceptual Methodology of Valuation	
8.1.3	Estimated Value of Water in Hydroelectric Power	
8.2 Valu	e of Water for Recreational Uses	
8.2.1	Introduction	
8.2.2	Water Recreation in the South Saskatchewan River Basin	
8.2.3	Participation in Water Based Recreational Activities	
8.2.4	Valuation of Water Recreation: Existing Studies	
8.3 Valu	e of Water for Waste Assimilation	
8.3.1	Introduction	
8.3.2	Review of Studies Dealing with Value of Water	
9. ECONO	OMIC VALUE OF WATER QUALITY	
9 1 Deg	radation of Water Quality	109

onepror rec).	Page No.
9.2 Valua	tion of Water Quality for the Households	110
10. SUMM	ARY OF VALUE OF WATER	112
10.1 Intro	duction	
10.2 Valu	e of Water in Alternate Withdrawal Uses	
10.2.1	Value of Water in Agricultural Uses	
10.2.2	Value of Water in Non-Agricultural Uses	
10.3 Valu	e of Water in Alternate Withdrawal Uses	
	PART THREE CLIMATE CHANGE AND THE VALUE OF WATER	
11. INT	ERRELATIONSHIPS BETWEEN CLIMATE CHANGE A	ND THE
VALUE O	FWATER	
11.1 Con	ceptual Interrelationships between Climate Change and Value o	f Water 119
11.1.1	Impact of Climate Change on Water Supply (Availability)	
11.1.2	Water Use / Demand of Water Under Climate Change	125
11.1.3	Impact of Climate Change on the Value of Water	129
11.2 Con	ceptual Approach to Estimation of Water Value under Climate (Change 129
11.2.1	First Generation Effects - Climate Change and Water Use Patter	rns 129
11.2.2	Second Generation Effects - Impact on Water Using Sectors	129
11.2.3	Third Generation Effects - National and Regional Level Effects	s 130
11.3 Wat	er under a Climate Change Regime	
11.3.1	Domestic Water Use Levels	
11.3.2	Industrial and Power Generation Water Use	
11.3.3	Agricultural Water Use	
11.3.4	Recreation, Navigation, and Ecosystem Water Use	
11.4 Clin	ate Change, Water Quality, and Water Use	
11.5 Non	-Use Related Factors Affecting Value of Water	
11.5.1	Cost of Water Development	
11.5.2	Cost of Water Conservation	
11.5.3	Value of Change in Stream Flows	
11.6 Imp	ications of Climate-Induced Water Use	
11.6.1	Increased Competition for Water	
11.6.2	Development of Information on Present Water Use Levels and	Patterns 144
11.6.3	Vulnerability of Regions to Water Availability	
11.6.4	Socio-Economic Impacts	
11.6.5	Integrated Water Management	
11.6.6	Demand Management	
11.6.7	Inter-Regional Conflicts	
116.8	Legal and Institutional Development	

Chapter No.	Page No.
12. SUMMARY AND CONCLUSIONS	
REFERENCES	
APPENDICES	
APPENDIX A- POPULATION DATA	
APPENDIX B-LIVESTOCK WATER USE	173
APPENDIX C-VISITATION DATA	177

LIST OF TABLES

Table No.Page	No.
Table 2.1. Drainage Area of Major Rivers in the SSRB	9
Table 2.2. Total Population of Each Sub-Basin in th SSRB in 1991 and 2001	9
Table 2.3. Employment by Major Industry Groups, and its Distribution,Saskatchewan and Alberta Portions of the SSRB, 2001	10
Table 2.4. Importance of SSRB Economic Activity Related Employment to Provincial Economies, 2001	1 11
Table 2.5. Distribution of GDP (\$ Millions) in Major Industries within the SSRB in 2001	12
Table 2.6. Irrigated and Dryland Crop Mix for the Alberta and Saskatchewan Portions of the SSRB (2001)	14
Table 2.7. Distribution of Employment in Commercial Agricultural Activities in the SSRB in 2001	14
Table 2.8. Contributions of Commercial Agricultural Activities to GDP (\$ Millions) is the SSRB in 2001	n 14
Table 2.9. Economic Indicators for Other Primary Industries in the SSRB in 2001	15
Table 2.10. Distribution of Employment in the Manufacturing Sector within the SSRB in 2001	17
Table 2.11. Distribution of GDP (\$ Millions) throughout the Manufacturing Sector of the SSRB in 2001	18
Table 2.12. Distribution of Employment in the Service Sector within the SSRB 2001	19
Table 2.13. Distribution of GDP (\$ Millions) throughout the Service Sector of the SSRB in 2001	20
Table 3.1 A Taxonomy of Water Use	21
Table 3.2. Community Water Use in the SSRB (dam ³ /year) by Sub-basin in 1996 and 2001	26
Table 3.3. Mining Water Intake and Percentage Consumption by Sub-basin, 1996	27

Table No.Page No.
Table 3.4. Hydro Power Plants in Saskatchewan and Alberta
Table 3.5. Thermal Power Plants in Saskatchewan 29
Table 3.6. Industrial Water Use by Sector and Sub-basin, 1996
Table 3.7. Estimated Numbers of Wetlands in the SSRB by Categories 32
Table 4.2. Recommended Valuation Techniques Consistent with Total Economic Value 40
Table 5.1. Apportionment of Irrigation Districts to Sub-Basins - Alberta
Table 5.2. Irrigation Districts within the Saskatchewan Sub-Basin 49
Table 5.3. Crop Mix for Alberta Irrigation Districts and the LDDA, Saskatchewan 50
Table 5.4. Percentage of Crop under Different Irrigation Technology, SSRB Alberta 51
Table 5.5. Percentage of Cropping Cropped Area under Irrigation Technology, SSRB Saskatchewan, 2004
Table 5.6. On-Farm Irrigation System Efficiencies, SSRB Alberta 52
Table 5.7. Coeffecients for Selected Crops in Alberta 54
Table 5.8. Mean Effective Precipitation by Crops and by Sub-Basin (mm/ha/growing season)
Table 5.9. Model Values for ETa and ETp (mm/ha/growing season) by Crop and Sub-Basin 56
Table 5.10. Total Physical Product (Crop Yields) in Kg/Ha Under Standard Irrigation Requirements
Table 5.11. Marginal Cost of Irrigation by System 57
Table 5.12. Marginal Value Product by Crop and Sub-Basin (\$/dam³) 58
Table 5.13. Irrigated Cropped Area in SSRB Sub-Basins of Alberta (ha) in 2001
Table 5.14. Dryland Cropped Area for SSRB Sub-Basins, Alberta (ha) in 2001

Table No.Page No.
Table 5.15. Irrigated Crop Cropped Area, LDDA Saskatchewan, 2004 69
Table 5.16. Dryland Crop Cropped Area for LDDA, Saskatchewan, 2000 69
Table 5.17. Cropping Area for the SWDA, Saskatchewan
Table 5.18. Irrigated Net Returns in Southern Alberta, by Crops
Table 5.19. Weighted Dryland Net Returns for the Alberta Portion of the SSRB
Table 5.20. Weighted Irrigated Net Returns for the LDDA, Saskatchewan
Table 5.21. Weighted Dryland Net Returns for the LDDA, Saskatchewan
Table 5.22. Weighted Average Net Returns from Irrigation, Alberta Sub-Basins
Table 5.23. Weighted Net Returns for Various Sub-Regions of SSRB Saskatchewan 74
Table 5.24. Estimated Water Use for Irrigation in the SSRB
Table 5.25. Irrigation Total Water Use in SSRB Sub-Basins
Table 5.26. AVP Calculation, SSRB Sub-Basins 76
Table 5.27. Total Value of Irrigation Water in SSRB Sub-Basins
 Table 6.1. Crop Production and Net Return Differences 'A' (Difference in Average Year over Drought Year, Both under Dryland Farming); Saskatchewan and Alberta
Table 6.2. Marginal Change in Irrigated Crop Production in a Drought Year (Difference 'B') for SSRB Alberta
Table 6.3. Crop Productions and Net Return Difference 'B' (Drought Year Irrigated Crop) for Red Deer River Sub-Basin 82
Table 6.4. Crop Production and Net Return Difference 'B' (Drought Year Irrigated Crop) for Oldman River Sub-Basin 82
Table 6.5. Crop Production and Net Return Difference 'B' (Drought Year Irrigated Crop) for Bow River Sub-Basin 83

Table No.	Page No.
Table 6.6. Crop Production and Net Return Difference B (Drought Year Irr Crop) for SSRB-Saskatchewan.	igated
Table 6.7. Change in Net Farm Income from Livestock Production under In all Sub-Basins of the SSRB in Alberta, 2004)rought
Table 6.8. Estimation of Value of Water for Livestock Production During a Year	Drought
Table 6.9. Long Run Value of Irrigation Water through Drought Mitigation Livestock Operations	1 for 85
Table 6.10. Number of Farms by Farm Type in the Alberta CAR2 Region.	
Table 6.11. Number of Farms with Source of Water	87
Table 6.12. Annual Operational and Depreciation Charge by Source of Far	m Water 88
Table 6.13. Estimated Value of Water in Livestock for Alberta CAR2	88
Table 6.14. Number of Farms by Farm Type in the Saskatchewan CAR3 B Region	N and 6B 89
Table 6.15. Estimated Value of Water in Livestock for Saskatchewan CAR and 6B Region	3 BN 89
Table 7.1. Marginal Values for Residential Water Demand, Selected Period	ds 93
Table 7.2. Estimated Value of Water for Municipal Uses, by Type of Use, Newfoundland	
Table 7.3. Estimated Value of Industrial Water Use in British Columbia, 1	981 95
Table 8.1. Survey Results of Water Recreation Preferences for Residents of Saskatchewan River Basin, Alberta and Saskatchewan Portions	of the 104
Table 8.2. Estimated Value of Water in Water-Based Recreational Activiti	es 105
Table 10.1. Value of Water in Agricultural Uses, SSRB, 2004	
Table 10.2. Value of Water in Non-Agricultural Withdrawal Water Uses	

Table No.	Page No.
Table 10.3. Value of Water in Non-Agricultural In-Situ Water Uses	
Table 11.1. Cost of Developing Water for Non-Irrigation Uses	
Table 11.2. Estimated Costs and Benefits of Stream flow Changes	
Table 12.1. Value of Water in Agricultural Uses, SSRB, 2004	
Table 12.2. Value of Water in Non-Agricultural In-Situ Water Uses	150

LIST OF FIGURES

Figure No. Page No.
Figure 2.1. Map of the South Saskatchewan River Basin
Figure 2.2. Distribution of Employment in 2001among Major Industries in the SSRB (Alberta and Saskatchewan Portions)
Figure 2.3. Contributions of Major Industries to the GDP (\$ Millions) of the SSRB (Alberta and Saskatchewan Portions), 2001
Figure 3.1. Water Withdrawals in the SSRB, by Major Sectors, 1996
Figure 3.2. Distribution of Water Withdrawal Use in the SSRB, by Major Sectors, 1996
Figure 3.3. Proportion of Irrigation Water Use by Sub-Basin in the SSRB, 1996
Figure 3.4. Proportion of Livestock Water Use by Sub-Basin, 1996
Figure 3.5. Distribution of Mining Water in the SSRB, 1996, by Type of Mining 27
Figure 3.6. Manufacturing Water Intake Proportions in the SSRB, 1996
Figure 3.7. Manufacturing Water Use by Sub-Basin, 1996
Figure 4.1. Elements of Total Economic Value
Figure 5.1. Concept of Average Value of Water in Irrigation
Figure 5.2. Total Value of Production Function for Water, and Associated Marginal Value Product
Figure 5.3. Water Allocation among Crops in the Bow River Sub-Basin
Figure 5.4. Water Allocation among Crops in the Oldman River Sub-Basin
Figure 5.5. Water Allocation among Crops in the Red Deer River Sub-Basin
Figure 5.6. Water Allocation among Crops in the SSRB-Alberta Sub-Basin
Figure 5.7. Water Allocation among Crops in the SSRB-Saskatchewan Sub-Basin 63
Figure 6.1. Drought Mitigation for Crop Production through Irrigation

LIST OF FIGURES (CONTD.)

Figure No.	Page No.
Figure 6.2. Schematic of Value of Water in Drought Mitigation through Liveston Production	ck 80
Figure 8.1. Distribution of Visitor Types to Alberta Parks	102
Figure 8.2. Saskatchewan Provincial Parks Recorded Visits, 1994 to 2002	103
Figure 11.1. Interrelationships among Climate Change Attributes and Value of Water	132
Figure 11.2. Climate Change and Industrial Water Use	135
Figure 11.3. Agricultural Water Use under Climate Change	

ACKNOWLEDGEMENTS

This study would not be possible without the generous financial support from the Prairie Provinces Water Board, Environment Canada. Author would like to thank Mr. Wayne Dybvig and Richard Kellow for their timely guidance over the course of this study. Mr. Dybvig also provided many helpful comments on the draft report.

In addition the author would like to acknowledge the following contributions made by the following individuals:

- Barbra Fortin who undertook the responsibility of finalizing the draft including format and other changes;
- Tony Samarawickrema who developed an earlier analysis for the irrigation values, livestock values and drought mitigation value of water;
- Tony Samarawickrema who provided inputs into the climate change section of this report;
- Robert Bewer who developed an earlier draft of recreation water use;
- Amanda Neall who provided some input into the climate change section of this report.

Technical editing of this report was provided by Ms. Miranda Traub, which is sincerely appreciated. Final touches in terms of formatting of the document were undertaken by Mr. Ramakrishna Alluri of University of Saskatchewan.

The above assistance provided by these individuals is gratefully acknowledged. Any remaining errors of omission or commission are the responsibility of the author.

S.N.K.

Chapter 1

INTRODUCTION

It is an incontrovertible fact that we cannot live without water. Like air, water is a basic need. Water is sometimes described as "the provider of the infrastructure for life." It is fundamentally important.

Standing Senate Committee on Energy, the Environment and Natural Resources (2005)

The importance of good quality water in sufficient quantities to meet all basic needs of the society is incontestable. Statements such as the above illustrate the social, economic and political importance of water to Canadian people. Although water is important for the survival of the environment and of ecosystems, it is equally, if not more, important for the continuance of social and economic activities in the society. In many circles, availability of good quality water in ample quantities is taken for granted. Its importance is realized only when members of the society are faced with water shortages, or when water quality deterioration affects society directly or indirectly. Among the many causes that threaten a society with water shortages, is predicted climate change. The accumulation of greenhouse gases in the atmosphere is expected to have a significant impact on the quantity and quality of water resources in the Prairies. Rising temperatures are predicted to alter the hydrologic cycle by changing precipitation patterns, runoff regimes, evaporation rates, as well by increasing the occurrence of floods or droughts. While the precise effects of climate change are uncertain, the estimation of the value of water will provide the basis for informed management decisions when faced with future water scarcity.

1.1 Background

The South Saskatchewan River Basin (SSRB) is a sub-basin within the Saskatchewan-Nelson river system. The larger system extends from the Rocky Mountains in Alberta, and drains into the Hudson Bay. The SSRB is a conglomerate of several watersheds, including the Bow River basin, the Oldman River basin, and the Red Deer River basin; which then join to create the South Saskatchewan River basin. The basin extends from the eastern slopes of the Rockies in Alberta and travels in an easterly direction until the South Saskatchewan River joins the North Saskatchewan River in Saskatchewan. Major cities within the SSRB are Calgary, Red Deer, Medicine Hat, Lethbridge, Swift Current, and Saskatoon. The major river systems include the South Saskatchewan River, Red Deer River, Oldman River, Bow River, and the North Saskatchewan River. These rivers are necessary to sustain biological, social, and economic activities in all communities within the boundaries of the SSRB.

1.2 Need for the Study

Although water is a renewable resource, there is still the need for its efficient distribution. For all allocation decisions, whether allocating water among various users or allocating scarce funds among competing uses (for example, water resource development vs. environmental protection), decision makers require knowledge of value of water. The five sub-basins in the SSRB use water in different proportions, thus each location could have a different value placed on water. Such values can be introduced into project evaluation (estimation of benefits) as well as into long term management of water projects / resources in the region. Such water use management as well as its development in the SSRB is the responsibility of the provincial governments of Saskatchewan and Alberta within their respective borders. These decisions are guided, in addition, by the Prairie Provinces Water Boards agreement on the sharing of water resources between the two provinces.

In the long run, determining the value of water is required for selecting the best adaptation option for the water users in the wake of global change, such as climate change. This requires, in addition to an identification of adaptation options, an economic assessment of costs and benefits, which requires knowledge of the value of water. The value of water is the necessary ingredient to make informed estimates about how our water resources will be compromised due to climate change.

1.3 Objectives of the Study

The major objective of the proposed study is to estimate the value of water in major withdrawal uses within the South Saskatchewan River Basin (SSRB) for both the current time period and future period (under climate change). This is accomplished by applying the state-of-the-art techniques to value the water use for major uses, such as agriculture. Other uses are based on a literature review. Subject to availability of data, valuations is done on a disaggregated basis for the five various sub-basins within the SSRB. A second objective of the study is to conceptualize the relationship between the value of water and climate change.

1.4 Scope of the Study

The study encompasses the value of water in the all consumptive and non-consumptive uses in the SSRB, and is analyzed in a disaggregated manner for the five sub-basins within Alberta and Saskatchewan. The sub-basins include the Bow River basin, the Oldman River basin, the Red River basin, the SSRB Alberta (lower) basin and the SSRB Saskatchewan (upper) basin. The last two are in fact one sub-basin, which are divided into two for study because they are between the two provinces of Saskatchewan and Alberta.

1.5 Organization of the Report

The report is divided into four main parts. Part one provides a background of the physical and economic profile of the basin and a background of the water uses. Part two provides the main valuation of water in the SSRB, starting with a conceptual framework and continuing with the main valuation components. The components discussed in order are irrigation, livestock, drought mitigation, municipal (including domestic and industrial), mining, power generation and valuation of in-situ water uses. In part three, a review of studies dealing with impact of climate change on water value is provided. This is followed by the summary and conclusions of the study.

PART ONE

BACKGROUND INFORMATION

Chapter 2

PHYSICAL AND ECONOMIC PROFILE OF THE SOUTH SASKATCHEWAN RIVER BASIN

The South Saskatchewan River Basin (SSRB) is a very important region of the Prairie Provinces on account of the share of economic activity that lies herein. In 2001, the Alberta portion of the SSRB had a population of 1,582,981 and the Saskatchewan portion 324,356 (Sobool and Kulshreshtha, 2003). This represents 53.2% of the total population of Alberta and 33.1% of the population of Saskatchewan residing within the boundaries of the SSRB (Statistics Canada, 2002). In this chapter, information regarding its location, climate, population, and industrial base is provided.

2.1 Location and Description of the Basin

The SSRB extends from the Continental Divide through southern Alberta and into southcentral Saskatchewan (Fig. 2.1). The SSRB is part of a major river system within the Nelson River basin beginning from the Rocky Mountains, which extends through the Prairie Provinces before emptying into the Hudson Bay. The entire SSRB extends over an area of about 150,000 km² (Armstrong, Pietroniro and Rolfe, 2004).

Source: Partners for the South Saskatchewan River (2005), p 2

Figure 2.1. Map of South Saskatchewan River Basin

There are three ecozones in the SSRB: The Prairies, the Boreal Plains, and the Montane Cordillera. The Prairies make up 80% of the SSRB and occupy the entire central and eastern portions of the entire basin. Together, the Boreal Plains and Montane Cordillera comprise 20% of the basin. The Boreal Plains are found in eastern Saskatchewan and western Alberta, while the Montane Cordillera is found only in Alberta, in the western corner of the SSRB. The Prairie ecozone consists mostly of grasslands and possesses a characteristic water deficit. This ecozone is divided into aspen parkland, moist mixed grassland, mixed grassland, cypress upland, and fescue grassland (found only in Alberta). The Boreal Plains ecozone is primarily dominated by mixedwood and conifer forests that are present in the boreal transition zone and the western uplands. Finally, the Montane Cordillera consists of the eastern continental ranges and the northern continental divide (Canadian Council of Ecological Areas, 2004).

Climate within the SSRB varies slightly throughout. Temperature increases southward, yet precipitation increases north and westward. The average annual temperature in the SSRB is between 2° C and 6° C. Average precipitation rates are between 282-800 mm. annually. The higher amounts of precipitation occur over the Rocky Mountains. With the Canadian Rockies on the western border of the SSRB, elevation is the greatest in this area (~ 3000m) compared to lower elevations to the east (~280m). Potential evapotranspiration increases to the south and east with values ranging from 450 mm to >800 mm (Acton, Padbury and Stushnoff., 1998).

The SSRB is an area that is particularly susceptible to drought. Droughts can be meteorological, agricultural, hydrological, or socioeconomic. Droughts occur in the SSRB due to the existence of natural barriers (i.e. Canadian Rocky Mountains) that obstruct incoming moisture from the Pacific Ocean. The most vulnerable areas of the SSRB are located northwest of Medicine Hat, west of Swift Current, and south of Saskatoon. These regions are deemed sensitive based on their aridity index, wind speed, soil texture, slope gradient and aspect, agricultural land use, and available water capacity (Acton, Padbury and Stushnoff, 1998).

2.2 Sub-Basins

The SSRB is comprised of four major sub-basins: Red Deer, Oldman, Bow, and South Saskatchewan. The last basin is divided into two parts for the study because it includes area that are administered by different provinces -- the South Saskatchewan (lower) in Alberta and the South Saskatchewan (upper) in Saskatchewan. The largest sub-basin in the SSRB is the South Saskatchewan at about 48,000 km², and the smallest is the Bow River basin at just over 25,000 km² (Table 2.1). Rivers within the SSRB are very important to the communities therein. Dams and reservoirs have been constructed on several of the major rivers within the SSRB and are owned and operated by different organizations for different purposes, including irrigation, power generation, and recreational purposes.

River	Drainage Area (km ²)
Entire South Sask. River Basin to St.Louis (Sask. and Alta.)	148,000
Bow River near mouth	25,300
Red Deer River Near Empress	46,800
Oldman River Near mouth	27,500
South Saskatchewan River	48,400

 Table 2.1.
 Drainage Area of Major Rivers in the SSRB

Source: Armstrong, Pietroniro and Rolfe (2004)

2.3 **Population Base**

The current (2001) population of the SSRB was estimated at 1.5 million, with 80% residing in the Alberta portion (Armstrong, Pietroniro and Rolfe, 2004). Less than 5% of the population was estimated to be rural (Armstrong, Pietroniro and Rolfe, 2004). A socio-economic database of the SSRB was produced by Sobool and Kulshreshtha (2003) and in this they derive the population by sub-basin, rural municipality, census division and municipal division (as applicable) from 1951- 2001. They summarized the urban, rural and farm population statistics for the SSRB among sub-basins. The population totals for each sub-basin in 1991 and 2001 is outlined in Table 2.2. More detailed results are presented in Table A.2 of Appendix A.

Cash hasin	Population ¹				
Sud-Dasin	1991	2001			
Red Deer River	208,932	272,599			
Bow River	805,563	1,016,856			
Oldman River	156,205	207,804			
S. Saskatchewan River (AB)	65,302	85,722			
S. Saskatchewan River (SK)	277,504	324,356			

Table 2.2.Total Population of Each Sub-Basin in the
SSRB in 1991 and 2001

Population totals were obtained by the summation of urban, rural, and farm populations from Sobool and Kulshreshtha (2003).

Within the entire SSRB, Calgary is the largest city with a population of 876,519 (2001) and is located in the Bow River sub-basin. The next largest city in the basin is Saskatoon with a population of 196,811 (2001). This city is situated in the Saskatchewan portion of the South Saskatchewan River sub-basin. Other larger cities include the City of Lethbridge, which lies within the Oldman River sub-basin and has a population of 68,712 (2001). In the Red Deer River sub-basin is found the city of Red Deer with a 2001 population of 68,308. Finally, within the Alberta portion of the South Saskatchewan River sub-basin is the city of Medicine Hat with a population of 50,152 (2001) (Sobool & Kulshreshtha, 2003). Most other communities are smaller in population size.

2.4 Major Industries

Contribution of various industry groups can be measured through number of workers employed as well as through value of net output generated. The latter is generally measured in terms of gross domestic product (GDP). Details on employment by major industry groups are shown in Table 2.3. The SSRB is predominantly service oriented, as 53% of total employment is in this sector (Figure 2.2). Trade and manufacturing are the next two largest sectors in the entire SSRB.

	Total SSRB	Saskatche	wan Portion	Alberta S	Sub-basins
Sector	Total Employment	Total Employment	% of Basin Employment	Total Employment	% of Basin Employment
Irrigation	2,338	663	28.3	1,676	71.7
Other Agriculture	56,934	18,551	32.6	38,382	67.4
Other Primary	53,165	5,905	11.1	47,260	88.9
Agri-Food	19,505	3,675	18.8	15,830	81.2
Other Manufacturing	70,715	12,300	17.4	58,415	82.6
Construction	78,115	12,105	15.5	66,010	84.5
Utilities	8,050	1,390	17.3	6,660	82.7
Trade	167,560	33,125	19.8	134,435	80.2
Services	596,770	114,440	19.2	482,330	80.8
Government	42,030	12,660	30.1	29,370	69.9
Total Employment	1,095,182	214,814		880,368	

Table 2.3.	Employment	by	Major	Industry	Groups,	and	Its	Distribution,
	Saskatchewan	and	l Alberta	Portions	of the SSR	B , 20	01	

Source: Data obtained from Statistics Canada, Special Tabulation (2004).

Individual provincial basins within SSRB are relatively similar in composition with respect to employment pattern. However, in terms of absolute size, Alberta portion of the SSRB is over four times larger than that of the Saskatchewan portion (See Table 2.3). The other distinguishing feature of the two portions of the SSRB are the following. (1) Alberta has a larger employment in irrigated agriculture as a proportion of the total SSRB. In fact, almost three-quarters of the total irrigated agricultural employment are in this portion of the SSRB. (2) The Alberta portion of the SSRB is also more industrially developed as shown by employment in agri-food processing and other manufacturing industries. The importance of various sectors in the SSRB to each of the two provinces is shown in Table 2.4.

Table 2.4 shows the employment contributions of the SSRB portions of Saskatchewan and Alberta and how they are related to the economies of both provinces. Irrigation in both Saskatchewan and Alberta has the majority of employment within the boundary of the SSRB in each respective province. Employment in the Agri-Food industry also represents over 60% of each province's employment occurring within the SSRB. Many industries in Alberta have the majority (>50%) of their sectors employed within the

SSRB. In Saskatchewan, the proportion of employment in the SSRB is still quite significant at 43% of the total provincial employment.

Figure 2.2. Distribution of Employment in 2001 among Major Industries in the SSRB (Alberta and Saskatchewan Portions)

Table 2.4.	Importance of SSR	B Economic	Activity	Related	Employment	to
	Provincial Economie	s, 2001				

Sector	Employment in Saskatchewan	Employment SSRB Saskatchewan	Proportion of Saskatchewan Employment Within SSRB	Employment in Alberta	Employment SSRB Alberta	Proportion of Alberta Employment Within SSRB
Irrigation	955	663	69%	1,846	1,676	91%
Other Agriculture	68,225	18,551	27%	78,172	38,382	49%
Other Primary	18,005	5,905	33%	93,815	47,260	50%
Agri-Food	6,100	3,675	60%	22,885	15,830	69%
Other Manufacturing	23,290	12,300	53%	112,055	58,415	52%
Construction	27,230	12,105	44%	130,015	66,010	51%
Utilities	4,890	1,390	28%	13,565	6,660	49%
Trade	73,425	33,125	45%	258,735	134,435	52%
Services	250,630	114,440	46%	896,755	482,330	54%
Government	31,280	12,660	40%	77,455	29,370	38%
Total	504,030	214,814	43%	1,685,298	880,368	52%

Source: Based on data obtained from Statistics Canada, Special Tabulation (2004)

Evidence on the contribution of various industries to the GDP of the basin is shown in Table 2.5 and its distribution by major sectors in Figure 2.3. Consistent with employment patterns, GDP distribution shows that service sectors is the single largest economic activity in the basin. Over half the total basin GDP is generated by the service sector. This sector includes a variety of services, such as accommodation and foods, business services, health and educational services, among others. While significantly lower than that of the service sector, trade and construction sectors are the next higher contributors to the SSRB's GDP. As a whole, the Alberta portion of the SSRB contributes more to the GDP of the basin with over a \$57.5 billion dollar contribution. The Saskatchewan SSRB contribution is significantly lower at just over \$11 billion dollars.

Industries within the SSRB in 2001								
Sector	GDP Total SSRB	GDP SSRB Saskatchewan	GDP SSRB Alberta					
	1	Millions of Dollars						
Irrigation	596	92	504					
Other Agriculture	1,672	582	1,090					
Other Primary	12,280	1,396	10,884					
Agri-Food	920	232	688					
Other Manufacturing	5,492	722	4,770					
Construction	4,919	745	4,174					
Utilities	1,401	215	1,186					
Trade	7,065	1,370	5,695					
Services	27,950	4,190	23,760					
Government	6,639	1,898	4,741					
Total GDP	68,934	11,442	57,492					

Table 2.5.Distribution of GDP (\$ Millions) in MajorIndustries within the SSRB in 2001

Source: Based on data obtained from Statistics Canada (Special Tabulation, 2004)

2.5 Agricultural Land Use and Irrigation

Agricultural practices such as crop farming and livestock operations are a very important sector in the SSRB in their contributions to the economy. In using agricultural land to grow crops, producers are reliant on good growing conditions especially in dryland crop production. This means that in order to maximize their crop yields, producers require fertile soil and the right combination of sunlight and precipitation. To compensate for less than optimal conditions, crop producers use methods such as irrigation to reduce the effects of drought and pesticides and herbicides to combat weeds, insects and disease. Livestock operations include all populations of animals raised for production. Livestock such as beef cows and pigs are used for food products, whereas sheep and horses are also raised for non-consumptive purposes.

Figure 2.3. Contributions of Major Industries to the GDP (\$ Millions) of the SSRB (Alberta and Saskatchewan Portions), 2001

Irrigation in the SSRB falls under two categories, district irrigation and private irrigation. District irrigation is organized by a water users association and operates over a continuous parcel of land called an irrigation district. Producers pay a water charge to the association, while construction of pipelines and other infrastructure is paid for by the public. In contrast, private irrigation is not organized and the initiative to irrigate land is the responsibility of the producer. Instead of a water charge paid to an association, the producer must purchase a license to remove water from its source. Water is removed by the producer directly from the source (river, creek, or lake) and there is no requirement for additional infrastructure (Sobool and Kulshreshtha, 2003). Producers who use irrigation have a different choice of crops, and it is generally believed that irrigation brings diversification and stability to the region.

Table 2.6 illustrates the differences between the irrigated and dryland crop mixes in both the Alberta and Saskatchewan portions of the SSRB. Dryland crop practices are more prevalent in both provinces, but even more so in Saskatchewan. Oilseed crops, such as canola and flax, comprise the largest portion of irrigated crops in Saskatchewan's SSRB while forages, such as tame hay and silage, possess the largest crop percentage that is irrigated in the Alberta SSRB sub-basins.

With respect to dryland farming, there are a variety of farm types in the Basin. Their contribution in terms of employment and GDP are shown in Tables 2.7 and 2.8,

respectively. A large proportion of farms in the Saskatchewan portion of the SSRB are grain farms, followed by beef cattle farms. Alberta's farm types, in contrast, are dominated by beef cattle farms with grain farms close behind.

Table 2.6.	Irrigated and	Dryland	crop	mix	for	the	Alberta	and	Saskatchewan
	portions of the	: SSRB (2)	001)						

Crop	Alberta SSR	B (% Total)	Saskatchewan SSRB (% Total)		
· · · · · · · · · · · · · · · · · · ·	Dryland	Irrigated	Dryland	Irrigated	
Cereals	95.15	4.85	99.66	0.34	
Oilseeds	88.56	11.44	97.11	2.89	
Forages	77.84	22.16	99.85	0.15	
Other/Specialty	96.43	3.57	99.55	0.45	

Source: AAFRD (2003b), Statistics Canada (2005)

Table 2.7.	Distribution	of	Employment	in	Commercial	Agricultural
	Activities in t	he S	SSRB in 2001			

Sector	Employment SSRB Saskatchewan	Employment SSRB Alberta	Employment SSRB Total	
Grains	12,127	10,414	22,541	
Irrigation	663	1,676	2,338	
Dairy Cattle	374	1,261	1,635	
Beef Cattle	3,686	17,046	20,732	
Hog	492	1,163	1,655	
Poultry	167	683	850	
Livestock Comb.	1,002	5,376	6,379	
Miscellaneous	246	779	1,025	
Total Employment	18,757	38,398	57,155	

Source: Based on data from Kulshreshtha and Thompson (2004)

Table 2.8.Contributions of Commercial Agricultural
Activities to GDP (\$ Millions) in the SSRB in 2001

Sector	SSRB Saskatchewan	SSRB Alberta	SSRB Total
Grains	147	52	199
Irrigation	92	504	596
Dairy Cattle	21	22	43
Beef Cattle	342	840	1,182
Hog	34	64	98
Poultry	5	43	48
Livestock Combination	20	48	68
Miscellaneous	13	21	34
Total GDP	674	1,594	2,268

Source: Based on data from Kulshreshtha and Thompson (2004)

In terms of GDP, agriculture contributed \$2.2 billion in the basin, most of which was from beef cattle farms. About two-thirds of the basin GDP from beef cattle farms was generated in Alberta. In Alberta, this was followed by irrigated farms (or more appropriately irrigated production of various crops). The remaining farm types had relatively smaller contributions in this portion of the SSRB. In the Saskatchewan portion of the SSRB, agricultural GDP is mostly contributed by beef cattle and grain farms.

2.6 Other Primary Industries

2.6.1 Mining Activities

Mining activities in the SSRB include petroleum and coal, non-metal minerals, coal mines, and metal and non-metal mines. In Saskatchewan, mining includes metals (gold, iron, uranium, and base metals), fuel (oil, coal, natural gas), and industrial minerals (potash, salt, and others) (Government of Saskatchewan, 2005). In Alberta, mining is done for recovery of coal, minerals, natural gas, petrochemicals, and oil. Table 2.9 shows the contributions of this sector to the Basin's economy. In the Saskatchewan portion of the basin, this activity is limited to potash mining and some non-metal mining. The employment in this sector was estimated to be 4,595 workers. In Alberta, in contrast, this sector is ten times larger than that in Saskatchewan, employing about 46 thousand workers. The mining industry makes a net addition of \$12 billion annually (based on 2001 data). Much of this is in the Alberta portion of the SSRB.

Table 2.9.	Economic Indicators for Other Primary Industries
	in the SSRB, 2001

Industry / Sector	Employment SSRB Saskatchewan	Employment SSRB Alberta	Employment SSRB Total		
	EMPLOYMENT IN PERSON-YEARS				
Mining and Oil & Gas Extraction	4,595	44,885	49,480		
Forestry & logging	275	495	770		
	G.	D.P. IN MILLION	V \$		
Mining and Oil & Gas Extraction	1,350	10,810	12,160		
Forestry & Logging	27	33	60		

Source: Based on data from Kulshreshtha and Thompson (2004)

2.6.2 Forestry

Forestry in the SSRB is a very small sector. This is because much of the basin is used for agricultural purposes. Its total employment is only 770 workers, contributing some \$60 million to the basin's GDP. Much of this activity is limited to farm woodlots, and other public lands.

2.7 Manufacturing

The SSRB has a strong manufacturing industry. However, much of this industrial base is located in the Alberta portion of the basin. Employment by various manufacturing industries is shown in Table 2.10., while contribution of these industries to the basin's GDP is shown in Table 2.11. The largest contribution sector in the SSRB is the agricultural processing industries. Much of the Alberta's contributions in this sector are through livestock slaughtering and meat processing. However, when one peruses the contribution to GDP, chemical industries are the largest sector in the basin. Second in terms of employment in the Saskatchewan portion of the SSRB, are the machinery manufacturers, which are followed by primary metal manufacturing. In the Alberta portion of the basin, furniture and related product manufacturing followed by fabricated metal industries and machinery manufacturing provide the top employment.

2.8 Power Generation

Hydro-electric power generation is a non-consumptive water use. Twenty hydropower developments are located in Alberta, eleven of which are in the Kananaskis/Bow River system while seven smaller facilities are located along canals and watercourses in central and southern Alberta. Alberta's hydroelectric system is capable of meeting 5% of their power requirement (Alberta Environment, 2003). In Saskatchewan, there are several power plants that use the South Saskatchewan River, including the Coteau Creek hydro-electric plant, Queen Elizabeth natural gas plant (SaskPower, 2005)., and the Cory cogeneration plant (Nielson, 2003).

2.9 Service Sectors

The service sector is the highest employer in the SSRB (>54%) and provides the highest contribution to the basin's GDP (>40%). The majority of the service sector activity is located in the Alberta portion of the SSRB. Employment in the various sectors of the service industry is outlined in Table 2.10. and the contribution of these sectors to the SSRB's GDP is shown in Table 2.11. The top service industries with regards to employment in both the Alberta and Saskatchewan portions of the basin are health care and social services. The second highest service employers in the Alberta portion are that of professional, scientific and technical services. In the Saskatchewan portion, the second highest service employers are in accommodation and food services. The top two

highest service employers are in accommodation and food services. The top two contributors to the GDP of both provinces' portions of the SSRB are the same. The highest contributor is finance, insurance, and real estate renting and leasing while transportation and warehousing are the second highest.

Manufacturing Sector	Employment SSRB Saskatchewan	Employment SSRB Alberta	Employment SSRB Total
Agri-Food Processing*	3,675	15,830	19,505
Tobacco	10	1,270	1,280
Textile mills	50	255	305
Textile product mills	270	520	790
Clothing	355	830	1,185
Leather and allied products	50	195	245
Wood and Paper	1,590	5,195	6,785
Printing and associated activities	1,070	3,400	4,470
Petroleum and coal products	195	1,400	1,595
Chemicals	810	4,905	5,715
Plastics and rubber products	250	2,030	2,280
Non-metallic minerals	370	3,360	3,730
Primary metals	95	1,790	1,885
Fabricated metals	1,665	7,400	9,065
Machinery	2,480	6,515	8,995
Computer and electronic products	580	5,850	6,430
Electrical equipment, appliances, and components	335	1,575	1,910
Transportation equipment	990	2,610	3,600
Furniture and related products	560	6,450	7,010
Miscellaneous	575	2,865	3,440
Total Manufacturing	15,975	72,245	90,220

 Table 2.10.
 Distribution of Employment in the Manufacturing Sector within the SSRB in 2001

* Includes all food and beverage manufacturing

Source: Based on data from Kulshreshtha and Thompson (2004)

Manufacturing Sector	GDP SSRB Saskatchewan	GDP SSRB Alberta	GDP SSRB Total
Agri-Food Processing*	232	688	920
Tobacco	0	0	0
Textile mills	1	7	8
Textile product mills	14	38	52
Clothing	10	44	54
Leather and allied products	18	8	26
Wood and Paper	191	606	797
Printing and associated activities	23	181	204
Petroleum and coal products	8	150	158
Chemicals	129	1,326	1455
Plastics and rubber products	7	34	41
Non-metallic minerals	59	280	339
Primary metals	17	276	293
Fabricated metals	49	307	356
Machinery	62	546	608
Computer and electronic products	12	510	522
Electrical equipment, appliances, and components	44	29	73
Transportation equipment	49	141	190
Furniture and related products	6	176	182
Miscellaneous	23	111	134
Total GDP	954	5,458	6,412

Distribution of GDP (\$ Millions) throughout the Manufacturing Sector of the SSRB in 2001 Table 2.11.

* Includes all food and beverage manufacturing Source: Based on data from Kulshreshtha and Thompson (2004)
| Service Sector | Employment
SSRB
Saskatchewan | Employment
SSRB
Alberta | Employment
SSRB
Total |
|---|------------------------------------|-------------------------------|-----------------------------|
| Transportation and warehousing | 10,980 | 49,300 | 60,280 |
| Information and cultural industries | 4,525 | 23,280 | 27,805 |
| Finance, insurance, and real estate renting and leasing | 9,840 | 47,175 | 57,015 |
| Professional, scientific, and
technical services | 8,070 | 74,095 | 82,165 |
| Administrative and other support services | 5,670 | 35,220 | 40,890 |
| Educational services | 18,160 | 52,865 | 71,025 |
| Health care and social services | 25,195 | 75,240 | 100,435 |
| Arts, entertainment, and recreation | 4,495 | 18,580 | 23,075 |
| Accommodation and food services | 16,670 | 65,720 | 82,390 |
| Other services (except public administration) | 10,835 | 40,855 | 51,690 |
| Operating, office, cafeteria, and laboratory supplies | 0 | 0 | 0 |
| Travel and entertainment,
advertising and promotion | 0 | 0 | 0 |
| Transportation margins | 0 | 0 | 0 |
| Non-profit institutions serving households | | | |
| Total Employment | 114,440 | 482,330 | 596,770 |

Table 2.12.Distribution of employment in the Service Sector within the
SSRB in 2001

Source: Based on data from Kulshreshtha and Thompson (2004)

Service Sector	GDP SSRB Saskatchewan	GDP SSRB Alberta	GDP SSRB Total
Transportation and warehousing	760	3,301	4,061
Information and cultural industries	296	1,810	2,106
Finance, insurance, and real estate renting and leasing	1,727	10,007	11,734
Professional, scientific, and technical services	306	3,181	3,487
Administrative and other support services	116	1,041	1,157
Educational services	15	120	135
Health care and social services	251	1,026	1,277
Arts, entertainment, and recreation	50	304	353
Accommodation and food services	310	1,579	1,889
Other services (except public administration)	189	890	1,079
Operating, office, cafeteria, and laboratory supplies	0.4	0	0.4
Travel and entertainment, advertising and promotion	0	0	0
Transportation margins	0	0	0
Non-profit institutions serving households	169	502	671
Total GDP	4,189.4	23,761	27,950.4

 Table 2.13.
 Distribution of GDP (\$ Millions) throughout the Service Sector of the SSRB in 2001

Source: Based on data from Kulshreshtha and Thompson (2004)

2.10 Summary

Overall, the SSRB has many sectors which contribute to its economy, both in their additions to each province's employment and to the GDP. The SSRB provides 43% of Saskatchewan's total employment and 52% of the total employment of Alberta. The service sector is the highest provider of gainful employment in the SSRB as well as the highest contributor to the GDP of the basin. The Alberta portion of the SSRB represents a much higher percentage of employment and its industries offer a larger input to the basin's GDP than does the Saskatchewan portion. This is explained by the higher overall population and area in the Alberta side of the SSRB.

Chapter 3

WATER USE IN BASIN BY SUB-BASINS

Water use is a broad term describing the employment of water in association with other inputs in the production of certain economic activity or meeting a social need. Water for use is derived from both surface water bodies and groundwater aquifers. It is needed for almost all economic activities. In addition, it is critical for human use, which could be through withdrawal of water or using the water in the water bodies. In this chapter, water use in the SSRB is reviewed. Major emphasis is on that part of the use which is included for economic valuation.

3.1 Nomenclature related to Water Use

In the context of water use, it is necessary to distinguish among various terms.

Water intake: refers to the amount of water that is physically transferred from a source in order to satisfy a need.

Water consumption: is the actual volume of water lost during the production process of the activity or meeting the social need. It is the amount of water that is not available to any other user.

Water demand: quantity of water that is purchased by various users at a given price or user fee.

Water withdrawal use: refers to the water being physically removed from its source, used in a production activity, and then discharged.

In-situ water use: involves water being used without its removal from a source. Therefore, it does not entail discharge of water.

In this report, water use is identified as the amount of water that is required to sustain a given need of the society. The water needs of the ecosystems, although equally important, are not addressed.

3.2 Major Water Uses in the Basin

Water can have many uses including agricultural, municipal and residential, industrial, and recreational. A general classification of these uses is shown in Table 3.1. Direct uses of water include those for residential or domestic purposes. This type of use requires water to be withdrawn from the original source. In addition, water is withdrawn for its

use in industrial activities, and for power generation. In-situ water uses include hydropower generation, recreational activities, and waste assimilation.

Tune of		Indirect Use					
Use Direct Use		Water as primary input	Water as secondary input				
Withdrawal	Residential	Irrigation	Thermal power generation				
use		Livestock					
		Mining					
		Potash					
		Non-metallic minerals					
		Agricultural processing	Other manufacturing				
		Public water use	Commercial water use				
In-situ use	Recreation	Hydro-electric	Waste assimilation				
	Transportation	Fish and wildlife					

Table 3.1. A Taxonomy of Water Use

Source: Kulshreshtha et al. (1988)

Major withdrawal type of water uses in the SSRB include: irrigation, livestock, thermal power generation, municipal and industrial. In 1996, Armstrong, Pietroniro and Rolfe (2004) estimated the total water use¹ in the SSRB for these uses at 2.586 million dam³, as shown in Figure 3.1.

Source: Data obtained from Armstrong, Pietroniro, and Rolfe (2004). Figure 3.1. Water Withdrawals in the SSRB, by Major Sectors, 1996

¹ These estimates were accepted at face value since they provided a comparative water use picture. This study also estimated irrigation water use in the basin, and the estimated irrigation water use was found to be higher than the total shown here. Details are provided in Chapter 5.

Agriculture is a primary industry in the SSRB and is dependant upon having sufficient water supplies and often farmers are faced with drought. Figure 3.2 illustrates the distribution of water withdrawal in the SSRB by different sectors. Irrigation withdraws the most water in the Basin, estimated at 80% of the total. This is followed by municipal uses (12%). Other water uses are relatively small in magnitude. It should be noted that these are withdrawal water use, and not consumptive water use. Some of this water is returned to the original source as return flows. Irrigation and residential water use fall under this category.

Figure 3.2. Distribution of Withdrawal Water Use in the SSRB, by Major Sectors, 1996

3.3 Irrigation Water Use

Irrigation water use is a result of four sub-categories of irrigation in the Basin using administration of activities and method of delivery of water. These are District Irrigation, which can be further classified into sprinkler and surface irrigation methods; and Private Irrigation which could also be divided into the same two methods of delivery. The surface irrigation methods include primarily backflood irrigation

In the SSRB, the sub-basin with the largest proportion of irrigation water use is the Oldman with 37% or 932 million m³ of water use. The proportion and total quantity of water use for 1996 by all sub-basins are shown in Figure 3.3.

3.4 Other Agricultural Water Uses

Other agricultural water uses include water required for herbicide application, livestock watering, as well as for farm residential needs. Herbicide application is vital to the success of many crops in the SSRB. The highest proportion of water use for livestock is from the Red Deer sub-basin at 48% or 40 million cubic meters. The proportion and quantity of livestock water use for the other sub-basins is shown by Figure 3.4. Details of the annual water usage by different types of livestock in each sub-basin are outlined in Appendix B.

Source: Data obtained from Armstrong, Pietroniro and Rolfe (2004) Figure 3.4. Proportion of Livestock Water Use by Sub-Basin, 1996

3.5 Community/Municipal Water Use

As a critical component of urban life, municipal water uses are diverse. To start with, a municipality serves several types of establishments: residents, industries, commercial businesses, customers outside the municipal boundaries, plus all local municipal governments. Each one of these concerns use water to meet different types of need. For example, residents require water for drinking, cooking, bathing and sewerage, as well as for maintaining lawns. Local governments need it for cleaning streets, watering municipal green spaces, and controlling fires (Brandes and Ferguson, 2004). Commercial businesses and a variety of smaller scale enterprises such as bakeries and breweries also require high quality water for their production process (Brandes and Ferguson, 2004).

Most analyses of municipal water use focus either on total municipal demand or on residential water demand (Gibbons, 1986). In the context of the SSRB, the first approach is used. Water use data are available on a community level, with no further disaggregation by type of user. Water is withdrawn from surface as well as from groundwater sources. In Canada, approximately 74% of Canadians use surface water and the remaining 26% use ground water as sources. Source water limitations force users to use less desirable sources, such as deeper aquifers with higher mineral content in the Prairies (Environment Canada, 2004). In fact, a quarter of Canadian municipalities experienced water supply difficulties between 1994 and 1999, particularly those reliant on ground water supply (Environment Canada, 2004).

Rural private drinking water systems do not have the same water quality safeguards as municipal water systems. Therefore, rural residents do not enjoy the same level of confidence in terms of water quality as their urban counterparts. The contamination of surface water and groundwater could impact water quality. There is a perception that water quality degradation is a result of agricultural activities (AAFC-PFRA, 2003).

Tabulation of water use for each community of the SSRB from 1966 to 2001 is provided by Sobool and Kulshreshtha (2003), and is shown in Table 3.2. Communities in each of the sub-basin of the SSRB were included for two time period: 1996 and 2001. The Bow River basin had the highest water use and showed the largest increase in usage from 1996 to 2001. The Red Deer River basin had the lowest total usage among its aggregated communities. This is because the Bow River sub-basin houses the largest population center – City of Calgary. The second largest municipal water use in the Saskatchewan portion of the SSRB, which is also caused by the largest Saskatchewan city in the Basin – City of Saskatoon. In fact, the Bow and the South Saskatchewan sub-basins together account for around 86% of the urban water use. Rural water use is considerably less than urban water use but here too the Bow and South Saskatchewan basins together use around 91% of the rural water (Armstrong, Pietroniro and Rolfe, 2004).

Community Type ¹		Water Use (dam ³ /year)										
	Oldman River (Alberta)		Red Deer River (Alberta)		Bow River (Alberta)		SSR (Alberta)		SSR (Saskatchewan)			
	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001		
Cities	15.92	16.84	13.79	15.96	172.50	198.44	15.81	17.28	46.78	47.48		
Towns	16.60	17.62	7.88	9.43	7.87	8.61	2.13	2.23	3.39	3.51		
Villages	0.488	0.489	1.40	1.53	0.165	0.169	0.457	0.468	1.22	1.28		
Other	0.455	0.457	0.278	0.293	0.057	0.064	0.068	0.073	0.162	0.152		
TOTAL	33.46	35.41	23.35	27.21	180.60	207.28	18.46	20.05	51.55	52.42		

Table 3.2.Community Water Use in the SSRB (dam³/year) by Sub-Basinin 1996 and 2001

¹ Alberta designation based on no. of people: City=10,000+, Town=1000+, Village=300+, Other= <300 Saskatchewan designation based on no. of people: City=5000+, Town=500+, Village=100+, Other= <100 (Government of Alberta, 2005; Government of Saskatchewan, 2004)

² Sobool and Kulshrestha (2003).

Although most communities obtain their water from surface water bodies (particularly the rivers), groundwater is also used, particularly for the smaller communities and for rural farm and non-farm purposes. Water is present underground in aquifers (permeable rock) which can be tapped by wells to provide vast amounts of water for use. Ground water is often more reliable and less expensive than surface water sources (Environment Canada, 2005). Based on the Prairie Provinces Water Board (PPWB) database, distribution of communities by source of water could not be obtained.

3.6 Mining Water Use

Mining operation types in the SSRB include petroleum exploration, non-metal minerals (such as potash), coal mines, and metal and non-metal mines (Armstrong, Pietroniro and Rolfe, 2004). Water is used for different purposes in different mining operations. Potash mines use water primarily for the refining process. Water used in potash mining is consumptive and thus no water is returned to the environment. Sodium sulfate and salt mining operations use water to dissolve and precipitate the minerals (Kulshreshtha et al., 1988). Water is also used to wash sand and gravel from mining pits in order to recover precious metals (Government of Alberta, 2004).

The oil and gas industry uses water for recovering oil (injection of water into wells), drilling oil and gas wells, and for recovering of heavy crude oil (injection of steam). The latter two uses utilize surface water, while oil recovery utilizes ground water resources (Kulshreshtha et al., 1988). In recent years there has been increased concern about over use of surface water in petroleum production. In Alberta, while the overall use of water in petroleum production has been increasing, the volume of water diverted from fresh surface and fresh ground water sources has been declining. The majority of this type of water usage is outside the SSRB and in northern Alberta (Wittrock, 2004).

The proportion of water intake for mining sectors is shown in Figure 3.5. Metal and nonmetal mines are the largest water users in the SSRB. A distribution by water intake (withdrawal) in various sub-basins is shown in Table 3.3. The South Saskatchewan subbasin has the highest intake of water for mining purposes, with 90% of water intake for metal and non-metal mines being consumed. The Oldman sub-basin withdraws the least amount of water among all the sub-basins in the SSRB. The Red Deer sub-basin is the only sub-basin that withdraws water for coal mining. In the process of coal mining, 100% of the water withdrawn is consumed. Non-metal mineral mining has a lower consumption rate of the water withdrawn than do coal, petroleum and metal/non-metal mining, with a consumption of 30 to 50% of the water intake for this purpose.

Source: Data Obtained from Armstrong, Pietroniro and Rolfe (2004) Figure 3.5. Distribution of Mining Water in the SSRB, 1996, by Type of Mining

Table 3.3.Mining Water Intake and Percentage Consumption by Sub-
Basin, 1996

Type of	Oldman		Bo	W	Red Deer		South Sask.	
Mining	Intake (M ³)	Cons. (%)	Intake (M ³)	Cons. (%)	Intake (M ³)	Cons. (%)	Intake (M ³)	Cons.
Non-metal minerals	69,381	32	3,651,931	51	185,977	41	88,948	33
Petroleum & coal	-			-	18,235	96		
Metal & non- metal	7,200	83	-	-	-		7,865.091	90
Coal mines	-			-	98,032	100	-	-
Total	76,581		3,651,931		302,264		7,954.039	

Source: Armstrong, Pietroniro and Rolfe (2004).

3.7 Power Generation Water Use by Sub-Basin

An Environment Canada survey on Industrial Water Use in 1996 found 13 hydro-power plants in the SSRB, 12 in Alberta and one in Saskatchewan (Armstrong, Pietroniro and Rolfe, 2004). However, by 2005 those numbers increased to include 20 hydro-power developments in Alberta, 11 of which are located in the Kananaskis/Bow river system and seven smaller ones located along canals and watercourses along central and southern Alberta (Alberta Environment, 2003; Wittrock, 2004). Alberta's hydro-electric generating facilities are capable of generating 5% of their electricity requirements. In Saskatchewan, hydro-electric facilities generate 27% of the requirement (Bruneau, 2004; Wittrock, 2004). Among the power generating plants that use the water from the South Saskatchewan River are the Coteau Creek hydro-electric plant, the Queen Elizabeth natural gas plant, and the Corey cogeneration plant (Wittrock, 2004). Table 3.4 shows the hydro-power plants in the Alberta and Saskatchewan portions of the SSRB along with their respective water use. While SaskPower owns and operates all the facilities in Saskatchewan, Alberta deregulated its power generation facilities in 2001, and currently has four private-public operators (Bruneau, 2004).

The Environment Canada Industrial Water Use Survey indicated there were two steamthermal plants in the Alberta portion of the SSRB (Armstrong, Pietroniro and Rolfe, 2004). Alberta and Saskatchewan generate 75% and 92% respectively, of their power with conventional steam; while gas turbines contribute 0.9% and 2.4% respectively (Bruneau, 2004). Four natural gas fueled power plants operate in Saskatchewan to meet their peak demands, two of which are located in the SSRB. These thermal plants are shown in Table 3.5.

Hydroelectric power generation is net non-consumer of water. However, water is lost in the reservoirs through evaporation. In thermal power generation, water is lost through evaporation in cooling ponds as well as in the generation of electricity. The degree to which water evaporates is a function of the uses to which the water is put and the technology used in cooling the water (Bruneau, 2004). About 18% of the water intake in the thermal power production in the prairie provinces is consumed and at the same time 154% of the water intake is recycled (Bruneau, 2004). In the prairie-provinces, the production of 1 MW of electricity (thermal generation) requires 40 m³ of water intake or 7.3 m³ of water to be consumed (Bruneau, 2004).

3.8 Other Water Uses Within the Basin

Besides the main water uses discussed above, other water uses in the basin include industrial, community and in-situ water uses like recreational, wetland conservation, and navigation. It should be noted that in larger cities and towns, the industrial and commercial water is supplied though the municipal water systems.

Plant	River System	MW	Water Use (million cubic meters / yr)
	Saskatch	ewan	
Coteau creek	SSK-River	186	10,340
			Alberta
Barrier	Bow River	13	13,826
Bearspaw	Bow River	17	60,008
Cascade	Bow river	36	7,887
Ghost	Bow river	51	88,505
Horseshoe	Bow river	14	41,966
Interlakes	Bow river	5	4,661
Kananaskis	Bow river	19	62,387
Pocaterra	Bow river	15	7,015
Rundle	Bow river	50	13,525
Spray	Bow river	103	13,525
Three sisters	Bow river	3	9,103
Oldman river	Oldman river	32	
Chin chute	Chin Main Canal	13	
Raymond reservoir		18	
Belly river	St. Mary River	.*	
Waterton	Waterton River	Ŧ	
St Mary	St. Mary	4	
Brazeau	Brazeau River	355	
Taylor Hydro		12	

Table 3.4. Hydro-Power Plants in Saskatchewan and Alberta

Source : Bruneau (2004) and http://www.saskpower.com/aboutus/genfac/genfac.shtml.

Table 3.5. Thermal Power Plants in Saskatchewan

Plant	Location	MW	Water Use (million cubic meters / yr)
Saskatchewan			
Queen Elizabeth	Saskatoon	386	N.A
Success	Swift Current	30	N.A

Source: Obtained from http://www.saskpower.com/aboutus/genfac/genfac.shtml.

3.8.1 Industrial Water Use

Manufacturing industry sectors include food and beverage, chemicals, primary metalsiron, rubber, plastics, transportation equipment, paper, wood and metal fabrication (Armstrong, Pietroniro and Rolfe, 2004). Food and beverage and chemicals together account for almost 95% of the total water intake in the SSRB (Figure 3.6.). Industrial water use by sub-basin is detailed in Figure 3.7. Industrial use is largest in the South Saskatchewan River sub-basin and lowest in the Oldman River Basin. A summary of industrial water intake and percentage consumed is given in Table 3.6.

Source: Based on data obtained from Armstrong, Pietroniro and Rolfe (2004) Figure 3.6. Manufacturing Water Intake Proportion in the SSRB, 1996

Source: Based on data obtained from Armstrong, Pietroniro and Rolfe (2004) Figure 3.7. Manufacturing Water Use by Sub-Basin, 1996

	Oldman		Bow	r	Red Do	eer	S.Sask (AE	S.Sask (AB&SK)	
Sector	Intake (M ³)	Cons.							
Food & beverages	6,461,075	91%	11,386,744	76%	844,068	82%	5,908,510	73%	
Rubber		+	-	+	+		593,558	89%	
Chemicals	202	66%	194,764	53%	10,512,268	15%	4,619,878	23%	
Plastics	4,509	82%	84,238	60%	7,679	74%	12,165	91%	
Wood	12,641	85%	25,357	96%	33,738	81%	-	0.000	
Paper	-	-	24,630	10%	23,576	5%	-		
Primary metals- iron	10,613	45%	780,838	62%	6,330	8%	4,200	100%	
Metal Fabricating	2,241	91%	118,433	95%	4,835	92%	11,856	91%	
Transportation equipment	27,258	100%	79,788	98%	1,200	100%	2,820	100%	
Total Water Use	6,518,539		12,694,792		11,433,694		11,152,987		

Table 3.6.Industrial Water Use by Sector and Sub-Basin, 1996

Source: Armstrong, Pietroniro and Rolfe (2004).

The Bow River sub-basin withdraws the most water for industrial purposes. The Red Deer and South Saskatchewan sub-basins are a close second and third with their high withdrawal volumes. The Oldman basin withdraws nearly half of the amount as the Bow River basin and is therefore the lowest user of industrial water in the SSRB. It is only within the South Saskatchewan sub-basin that water is withdrawn for the rubber industry, and it is the only sub-basin that does not use water for the wood industry. Industrial sectors such as transportation equipment and metal fabricating consume nearly all of the water withdrawn, while the paper and chemical industries consume a much smaller portion of their intake volumes.

3.8.2 In-Situ Water Use

In-situ water uses include those which are for recreation (boating, fishing and swimming), wetlands (waterfowl conservation or hunting) and for transportation or navigation (Armstrong, Pietroniro and Rolfe, 2004). Since water is not used directly, water use related to these activities cannot be estimated.

Recreational water use can be either direct or indirect. Activities such as boating, fishing, and swimming require the direct usage of the water resource. Camping and hiking, on the other hand, use water indirectly to promote the recreational activity (Kulshreshtha et al., 1988).

An actual measure of water use in recreation is not possible; rather, the number of people visiting parks and recreation sites maybe estimated (Armstrong, Pietroniro and Rolfe, 2004). A summary of recreational parks that provide water based recreational activities

(by community and activity) for Alberta and Saskatchewan were provided by Sobool and Kulshreshtha (2003), and the geographic location of recreational parks is illustrated by Armstrong, Pietroniro and Rolfe (2004).

Water is used in the SSRB for navigation with the operation of a large number of ferry systems. The ferries transport people and vehicles across lakes and rivers either as a shortcut or as the only feasible way to travel to a destination. Other navigational water uses include barges for freight and ice roads (Kulshreshtha et al., 1988). These last two in-situ water uses, although present in Alberta and Saskatchewan, are not located inside the boundary of the SSRB.

3.8.3 Wetlands

Besides lakes and rivers, prairie landscape includes other water bodies, notably the wetlands. Wetlands are multi-functional and provide benefits directly and indirectly. These productive marshy areas support widespread food webs and a rich biodiversity of species. Wetlands are important for nutrient cycling, water storage, habitat, and for recreational purposes such as bird watching (Barbier, Acerman and Knowler, 1997). Data on wetlands within the SSRB are not available except in terms of some gross characteristics. These by sub-basins of SSRB and size categories are shown in Table 3.6. Most of the wetlands in the SSRB tend to be less than an acre. The Red Deer sub-basin had the largest proportion of large wetlands.

Area of the Wetland (acres)	Bow	Oldman	Red Deer	SSR	Total SSRB
<1	77	267	429	12,557	35,920
1-3	270	70	1,146	21,667	26,330
3-5	155	41	810	6,613	8,395
5-10	239	86	1,340	5,220	7,439
10-25	173	51	750	3,158	4,390
>25	153	18	581	1,624	2,465
Total	1,067	533	50,056	50,839	84,939
Average Area (Acres)	8.86	2.03	76.63	2.14	5.78

Table 3.7. Estimated Numbers of Wetlands in the SSRB by Categories

Source: Sobool and Kulshreshtha (2003)

3.9 Summary

Water is an important input in many of the economical sectors of the SSRB. Irrigation uses the largest amount of total water in the region (\sim 80%). The Oldman sub-basin consumes 37% of the total water withdrawn for irrigation. In livestock water use, the

Oldman basin is the lowest water user at only 3%. The Red Deer sub-basin is the highest user of water in the livestock sector with 48% of the total water used for this purpose.

The municipal sector is the second highest water user and withdraws 12% of all of the water used in the SSRB. Municipal usage includes water used in domestic, commercial, and governmental settings. The Bow River sub-basin consumes the highest proportion of water for municipal purposes. This coincides with the Bow River sub-basin having the highest population base at over one million residents.

The manufacturing sector requires water as an input in many of its sectors. Three percent of all water used in the SSRB is withdrawn for manufacturing/industrial purposes. The food and beverage sector consumes the largest proportion of manufacturing water in the SSRB, followed by chemicals manufacturing. The Bow River sub-basin withdraws 30% of the water used for manufacturing purposes with the Red Deer and South Saskatchewan (Alberta and Saskatchewan portions) not far behind with 27% each of the total water used in manufacturing. Also, three percent of the total water use in the SSRB is used in thermal power generation.

Mining for metal and non-metal minerals withdraws over 65% of the total water used in mining. This type of usage is 90% consumptive, and, therefore very little water is returned to the original source. The South Saskatchewan River sub-basin is the largest withdrawer of water for the purpose of metal and non-metal mining, and, thus, is the largest mining water user in the SSRB with well over twice the intake volume of the second highest water user, the Bow River sub-basin.

Overall, the South Saskatchewan River Basin, with a population of 1.5 million, uses over 2.5 million dam³ of water annually (1996 approximation by Armstrong, Pietroniro and Rolfe (2004)). This water is distributed among different sectors with some commanding more water than others to satisfy their needs.

PART TWO

VALUATION OF WATER

Chapter 4

CONCEPTUAL FRAMEWORK

In this chapter, a discussion of conceptual framework related to value of water is described. The concept of value is discussed in Sub-section 4.1, followed by a discussion of types of values used in water valuation in Section 4.2. Approaches to valuation of water are described in the next section, which is followed by the measurement of value in this context in Section 4.4.

4.1 Concept of Values

One of the greater obstacles in compiling values is how to value non-market activity. This is difficult because many of the services provided by water are not traded in a market under a competitive price. Moreover, value cannot always be expressed in economic terms. Since we cannot obtain another substance to substitute for water, we cannot place an economic value on water in terms of its importance to sustaining life, health and ecosystems (Dybvig and Kulshreshtha, 1988). Thus, with low levels of precision, objectivity and reliability, the need to find non-market valuation techniques for water exists. For near-market or non-market activities, environmental and resource economists use proxies as well as develop alternative techniques that impute values indirectly (some of these are described in Section 4.4). Such values range from those that rely on non-behavioral data, such as contingent valuation.

4.2 Typology of Values in the Context of Allocation of Water

For goods without markets or without well-functioning markets, value is measured by society's Willingness To Pay (WTP). Use of these goods at the estimated level of WTP for a good increases the society's welfare. This is equated to the economic value of the good. In the context of water resources, values can be differentiated further by stock value and flow value.

A stock value is applicable to a water-based ecosystem, such as lakes, wetlands, or rivers. This value can be broken down into three major components (Environment Canada and Statistics Canada, 2002):

- actual expenditures made by users in the course of their individual uses where water is a market good;
- values that can be imputed using methods that include some of the non-marketed values (such as rent valuation techniques, travel cost methods, hedonic pricing); and,

• values that could not be estimated using earlier methods but can be based on the estimation of consumers' surplus using contingent markets.

All three values are captured by a concept called "Total Economic Value – TEV" of a resource or ecosystem. Conceptually, total economic value (TEV) can be visualized in terms of various components, as shown in Figure 4.1. The use values are related to the use of water from a given source for various purposes. However, other values, particularly the non-use values, can only be estimated using the contingent markets. Use of this concept is recommended in use for the System of National Accounts for natural resources.

Figure 4.1. Elements of Total Economic Value

A flow value is related to actual use of a resource or an ecosystem. In the context of water, these values would be related to various types of uses. In fact, value of water will differ from one use to another, particularly upon the degree of importance of water to the end use. Two major categories of water uses are direct and indirect water use. Residential water use would be an example of the former, and irrigation water use for crops an example of the latter, since it is the demand for the products of irrigated lands that lead to economic demand for water. If a demand function for a particular water use is known, the value of water for a specific water use can be approximated using the concept of economic surplus (producer or consumer surplus depending on who is demanding the water). When a demand function for water is not observable, such a function can be approximated using analytical techniques, such as linear programming, or contingent valuation (Dybvig and Kulshreshtha, 1988).

Value of water can further be distinguished using the concept of marginality. This leads to two types of values – average values and marginal values. Average value is based on the average WTP for the total quantity demand by the users. It is simply the ratio of total

WTP to quantity used. Marginal value is the level of WTP associated with the last unit of the flow of resource (use of water).

Conceptually, the market value (if one exists) that is paid in the exchange of the last unit of water for use underestimates the total value of goods and services to consumers. Because consumers (or producers) pay the price of the last or marginal unit for all units consumed in the market, they enjoy a surplus of total satisfaction over total cost to them.

4.3 Approaches to Valuation of Water

As discussed above, the TEV is consistent with WTP approach, and the SNA is consistent with marginal value approach. A study by Environment Canada and Statistics Canada (2002) has identified the appropriate methods to follow in order to estimate various values of water. These are listed in Table 4.1. Various values associated with water were divided into four categories: (1) Direct Use Values, which included value of water in specific uses (such as agricultural domestic/municipal, and industrial (including power generation); (2) Indirect Use Values, which included benefits accruing to the society from various ecosystem functions associated with water, as well as commercial navigational and recreational uses of water; (3) Option Use Values for recreation, aesthetics, and property values; and (4) Passive Non-Use Values, including existence values and bequest values.

The method of estimation for direct use values proposed by the Environment Canada and Statistics Canada (2002) was the estimation of demand functions. The demand curve approach uses a given price to determine what quantity of water is demanded at that price. Given a budget constraint, a demand curve (or willingness to pay curve) can be mapped. The demand curve is useful in that it shows the maximum price a consumer would pay for the amount of water used (Kulshreshtha et al., 1988). However, its data requirements are immense. The two exceptions to the demand estimation are for irrigation, where a method of cost savings approach was suggested, and for stockwatering where a replacement cost method was proposed. Other methods included hedonic price model, travel cost model, and contingent valuation method.

In addition to the above methods, a variety of other methods are also used for valuation of water. One of these is the Residual Imputation where value of water is estimated as the difference between the value of the product less that of all other inputs. Alternative Cost method is another method where the value of water is approximated by the difference in per unit cost of current method of production and a more expensive, water-saving method.

Indirect valuation approaches include the hedonic pricing and travel cost. The hedonic price method estimates the value of water based on the attributes of water, rather than the water itself. The travel cost method estimates value by using the cost incurred in traveling to a site as proxy for the price. Both of these methods are based on observations of the consumer's behavior.

Water use/function	Valuation method	Compatibility with SNA
	DIRECT USE	S
1. Agriculture		
- Irrigation	Cost saving approach	Estimates producers' surplus (PS) as
		proxy for farmers' WTP for water
-Stock watering	Replacement cost	Estimates PS
3. Domestic/Municipal		
-Municipal domestic use	Derived demand	Estimates WTP
-Rural domestic use	Derived demand	Estimates WTP
-Commercial	Derived demand	Estimates WTP
4. Industrial		
-Pulp & paper prod.	Derived demand	Estimates WTP
-Chemical products	Derived demand	Estimates WTP
- Mineral Extraction	Derived demand	Estimates WTP
-Petroleum products	Derived demand	Estimates WTP
-Power generation	Derived demand	Estimates WTP
-Hydro	Residual Imputation	Estimates PS
-Thermal	Residual Imputation	Estimates PS
-Metal smelting	Derived demand	Estimates WTP
-Food processing	Derived demand	Estimates WTP
-Plastic manufacturing	Derived demand	Estimates WTP
-Textile manufacturing	Derived demand	Estimates WTP
	INDIRECT US	ES
1.Commercial navigation	Cost Savings Method	Rent values consistent with SEEA
2. Recreation & tourism		
- Recreational fishing	Hedonic TCM ² or CVM ³	Estimates WTP
- Canoeing, Sailing	Hedonic TCM or CVM	Estimates WTP
- Power boating	Hedonic TCM or CVM	Estimates WTP
- Swimming	Hedonic TCM or CVM	Estimates WTP
- Waterfowl viewing, Hunting	Hedonic TCM or CVM	Estimates WTP
3. Regulation function		
- Flood protection	Cost of alternative	Estimates PS
- Erosion protection	Cost of alternative	Estimates PS
- Habitat maintenance	Cost of alternative	Estimates PS
- Storm protection	Cost of alternative	Estimates PS
- Drought recovery	Cost of alternative	Estimates PS
- Biodiversity maintenance	Cost of alternative	Estimates WTP
- Bioenergy fixation	Cost of alternative	Estimates PS
- Climate regulation	Cost of alternative	Estimates PS
- Storage/recycling of organic matter, nutrients, human waste	Cost of alternative	Estimates PS
	OPTION USE	28:
- Recreation	CVM or Benefit	Estimates WTP
	transfer	

Table 4.1.Recommended Valuation Techniques Consistent with Total
Economic Value¹

Water use/function	Valua	tion 1	method	Compatibility with SNA
- Scenic	CVM transfer	ог	Benefit	Estimates WTP
- Property	CVM transfer	or	Benefit	Estimates WTP
the second second		PAS	SIVE USE	S
1. Bequest values				
-Spiritual & cultural values	CVM transfer	or	Benefit	Not consistent with SEEA
-Species	CVM transfer	or	Benefit	Not consistent with SEEA
-Habitats	CVM transfer	ог	Benefit	Not consistent with SEEA
2. Existence Values				
- Aesthetic values	CVM transfer	or	Benefit	Estimates WTP
-Educational and scientific information	CVM transfer	ог	Benefit	Estimates WTP

1 Environment Canada and Statistics Canada (2002)

2 Travel Cost Method (TCM)

3 Contingency Valuation Method (CVM)

The contingent valuation method is a direct approach used to estimate non-market value of water. This method involves the creation of a market by requesting consumer's willingness to pay for non-market water uses. The benefits transfer approach uses data from previous studies and applies them to another study (Environment Canada and Statistics Canada, 2002).

4.4 Measurement of Values through Concept of Producer and Consumer Surplus

A typical measure of the welfare of a producer is level of profit from a given activity. The profit is determined as the difference between total revenue and total costs (to include both variable costs and fixed costs). Although profit can serve as an appropriate measure of welfare effects of a change in economic parameters, such as price, according to Just, Hueth and Schmitz (1982), it is not always appropriate in other cases. An alternative to profit was suggested by Marshall (1930). The concept was that of quasi-rent or producer surplus. Marshall defined producer's net benefit as the excess of gross receipts which a producer received from a given production activity over the extra cost that the firm incurs to produce that product. Quasi-rent is defined as the difference between gross receipts and total variable costs. Thus, it is a measure of return to producers over all variables costs, which includes profit and fixed costs.

The other measure, particularly for the water users is the concept of consumer surplus. This is the area under the demand function over the price paid by the user (or cost to the user). This estimate measures the value as the net WTP. It is the portion of value that is not paid for by the consumer. A sum of the producer surplus and consumer surplus is a measure of social welfare from a change in the quantity of water available to water users (Kulshreshtha et al., 1988).

4.5 Summary

This chapter has laid the foundation on the concepts of value of water. It also categorized the valuation techniques under a typology and introduced the concepts of TEV, marginal and average value. Finally, the chapter highlighted the preferred valuation techniques used for TEV as proposed by Environment Canada and Statistics Canada (2002). The following chapters further discuss marginal and average value in the context of water value in irrigation, agriculture, power generation, residential, industrial, municipal, and mining uses. Also, the value of water in in-situ uses of recreation and waste assimilation is examined.

Chapter 5

VALUE OF WATER FOR IRRIGATION

5.1 Introduction

Agricultural production in Canada consumes water primarily for irrigation (85 percent) and livestock watering (15 percent) (Brandes and Ferguson, 2004). Agriculture is also a highly consumptive user of water because of high evapotranspiration (Brandes and Ferguson, 2004). Seasonally drier regions of Canada, like the southern prairies, could not be agriculturally productive if without irrigation. Agriculture is not only the largest user of water but also the largest net consumer. In this chapter, valuation of water for irrigation purposes is reported. Valuation is done for the five sub-basins of the SSRB.

5.2 Irrigation in the SSRB

Irrigation is required in the prairies where the annual precipitation ranges between 300-500 mm (Environment Canada, 2004). In 2000, Alberta and Saskatchewan were the two provinces with the largest irrigated area. Alberta had a total of 499,241 ha of irrigated lands, while Saskatchewan's area was around 68,470 ha.² Much of the irrigation in the province of Alberta was concentrated in the SSRB, as 492,706 ha of irrigated lands were estimated to be in the SSRB (Sobool and Kulshreshtha, 2003). In Saskatchewan, the situation was somewhat different. The Saskatchewan portion of the SSRB had an irrigated area of 34,969 ha. Thus, in Saskatchewan, SSRB contributes only half of the provinces irrigated area.

Irrigation use of water is through two types of irrigation: district (or group) irrigation projects, and private irrigation. In Alberta SSRB sub-basins, there are 13 irrigation districts found, whereas in Saskatchewan portion of the SSRB, irrigation is organized under thirteen such districts (or twelve, since information on one irrigation district were not available) such districts or water user groups. These areas are located in two regions of the province: The Lake Diefenbaker Development Area (LDDA), and (SWDA) Development Area. These areas also have a distinctly different irrigation pattern. In the LDDA, irrigation is very intense. Although farms have both irrigated and dryland areas, a wider set of crop choices are made for production. In the SWDA, irrigation is practiced as a small-plot irrigation system. Forages are the major crops on these irrigated lands.

² This figure is based on the estimate provided by the Census of Agriculture. Data from Provincial sources (Saskatchewan Agriculture and Food, 2000) reported an irrigated area for the province of 134,301 ha, some two times the area reported by the Agricultural Census.

5.3 Conceptual Valuation Methodology

The valuation methodology suggested for valuation of irrigation water by the Environment Canada and Statistics Canada (2002) was that of willingness to pay using the concept of producer surplus. This surplus is the return to producers when all factors of production have been paid. In the short-run, this means only the cash (variable) costs need to be paid, while in the long-run all cost items are included.

The two significant concepts in this context of water allocation among competing uses are:

- (1) What does the last unit of water contribute to the production of the product it is applied to?; and
- (2) What, on average, are the returns to producers for application of water to various uses?

The first concept is called marginal value product, and is very useful in deciding which crops to irrigate and the quantity of water used in its production. The marginal value is based on the concept of producer surplus associated with a marginal (incremental) change in the amount of water as an input in the production process. Here, value reflects the change in the quasi-rent associated with that amount of water. This value is referred to as the 'marginal' value.

The second concept is called the average value product or benefits from water application. This estimate reflects whether water should be allocated for irrigation or not, relative to other uses of water in a sub-basin. This value of water reflects a change in the economic welfare of the producer from applying water-using technology and related cultural practices. This gain is also measured in terms of producer surplus, except that the value is measured relative to alternative technology. In the context of irrigation, this technology is dryland production system. Each of the marginal and average values is described further below.

5.3.1 Concept of Marginal Value Product of Water

Marginal value product (MVP) of water reflects additional benefit to producer to apply an addition unit of water to a given crop. It would reflect on one side gain in revenue through increased yield (derived from the value of total production function) and on the other side by the cost of application of that additional unit of water to the crop. The additional costs may include a variety of agricultural inputs, such as fertilizer, chemicals, energy for water application, among others. This additional cost is typically called marginal cost (MC) of water³. The difference between change in gross revenue associated with a given quantity of water and that in the MC yields the aforesaid MVP of water in a given crop (use), is called the marginal value of water.

³ For a more comprehensive description of production functions and graphical illustration, the reader is referred to a Micro-Economic textbook (Varian, 1992).

5.3.2 Concept of Average Value of Water

As noted above benefits from the use of a resource typically accrue to producers or consumers or both. Consumer surplus is relevant only when price of a product is affected by the change in the production system (change from dryland production to irrigated production). However, given that scale of irrigated production is relatively small⁴, it can be assumed that irrigated producers are price takers.

The value of water is captured through a change in producer surplus resulting from a change in alternative production systems. Two alternative systems of production can be envisaged. One, if farmers had no access to water, crop production would be based on dryland production system. Two, if farmers had an access to water, the relative change in producer surplus would be over and above that under the dryland system. A somewhat simplified concept of this value is shown in Figure 5.1. Producer surplus under dryland production system is reflected by the area 'aPb', whereas that under irrigation is reflected by area 'Pcd'. Thus, the net gain in producer surplus is the area 'abcd', which, if divided by the total amount of water applied for irrigation, would yield average benefits or value of per unit of water.

Figure 5.1 Concept of Average Value of Water in Irrigation

This is reflected in the area under irrigation, relative to total cropped area. During 2000, irrigated area in Canada was less than two percent of total cropped area (see Kulshreshtha, Sobool, and Grant, 2005).

5.4 Estimation of Value of Water

In this section, conceptual methodology for the estimation of marginal and average value of water in irrigation is described.

5.4.1 Estimation of Marginal Value of Water

Estimation of marginal value of water requires the knowledge of a water production function further translated into a value of water function, and its incremental cost. This is because assessment of this value is related to the total value of a product associated with various levels of water application. Under the assumption of producers being price takers, the physical product function can be translated into a total value function by simply multiplying the physical product by the market price.

Under arid and semi-arid climates, crop water requirements are typically met through two sources: (1) natural precipitation (net amount available to the crop); and (2) supplementary irrigation. Relevant section of a value of production function is shown in Figure 5.2 (top). As water is added to the crop, production will increase until some maximum value of production is reached. Assuming rationality on the part of producers, no irrigation is provided beyond this point. The approximate shape of this function is considered to be non-linear in nature, although the shape of the function is subject to empirical testing.

Figure 5.2. Total Value of Production Function for Water, and Associated Marginal Value Product

5.4.2 Estimation of Average Value of Water

As shown in Figure 5.1., average value of water requires the estimation of producer surplus from two production systems — irrigated production system and the dryland production system. This is measured as the difference between gross or total value of production under each of the production systems, and the associated costs. Total value of production, as noted above, is a result of two items – crop yields under different levels of supplementary water application (irrigation), and the price the product fetches in the market. Since price of the product is assumed to be fixed (does not change with the change in the production level), this function is primarily a result of water-yield relationship, also known as the water production function.

The concept of cost of production is related to time horizon of the producer. In this context, two types of costs can be identified: Short run cost of production and Long run cost of production. The former includes only the variable costs of production associated with either of the two production systems. The latter includes short run costs as well as fixed costs. In the long run, use of water, therefore, has to pay for all costs of production.

Associated with these two costs are two different average values of water: Short-run value of water and Long run value of water. These are estimated as follows:

Short run		Incremental	Incremental	
Value of	=	Gross Revenue	Variable costs	(5.1)
Water		over Dryland	over Dryland	

The long run value of water is calculated in a similar manner except that all costs (variable and fixed costs) are deducted from the incremental gross revenue.

5.5 Empirical Methodology for Valuation of Irrigation Water

5.5.1 Overview of the Methodology

In order to operationalize the concepts of marginal and average value of water in irrigation, several steps were undertaken. These steps were common to both the valuation, and therefore, are described first. More detailed steps that were followed to estimate either the marginal or average value of water are discussed in Section 5.5 and 5.6, respectively. The common steps include the following:

- Step 1: Disaggregate the SSRB into sub-basins, and ascertain sub-basin specific crop mix for irrigation. This step is described in Section 5.4.2.
- Step 2: Estimate the cropping mix on irrigated farms in various sub-basins. This step is described in Section 5.4.3.

Step 3: Estimate the distribution of various crops by irrigation technology. This is discussed in Section 5.4.4.

5.5.2 Disaggregation of the SSRB into Sub-Basins

As noted in Chapter One, the SSRB can be disaggregated into the following five subbasins, the first four of which are within the province of Alberta and the fifth within the province of Saskatchewan.

- (1) Bow River basin, Alberta
- (2) Oldman River basin, Alberta
- (3) Red Deer River basin, Alberta
- (4) South Saskatchewan River basin (lower), Alberta
- (5) South Saskatchewan River basin (upper), Saskatchewan

In each of these river basins, irrigation is organized under two types: one, district irrigation, and two, private irrigation. Unfortunately most of the irrigation-related data are collected only for the district irrigation. Although some private irrigation does exist in the SSRB, details on the crop mix or any other aspect of irrigation are unavailable.

Irrigation districts in Alberta and Saskatchewan are located in various sub-basins. Therefore, the first step required was that of developing a correspondence system between the sub-basins and the irrigation districts. Although primary data on each parcel of land would have generated better quality data, in this study such data was not considered feasible. As a substitute, land area was used for such a correspondence. Using the geographical information system (GIS) data, area of each irrigation district in a sub-basin was estimated⁵. Many irrigation districts were found to be located in more than sub-basins. Details are shown in Table 5.1 for Alberta, and in Table 5.2 for Saskatchewan. Many irrigation districts is located in one or more sub-basins. For example, the Bow River irrigation district is located in the Oldman River sub-basin and in the Red Deer River sub-basin.

The Saskatchewan SSRB sub-basin included 12 irrigation districts, all of which were totally within the boundary of the sub-basin. These districts belonged to two Irrigation Development Areas of Saskatchewan⁶, the Lake Diefenbaker Development Area (LDDA) and the SWDA. Most of the irrigated area (87% of the total) was located within the LDDA. In contrast to Alberta, irrigation districts, with the exception of the South Saskatchewan River Irrigation District

⁵ This information was provided by Mr. Robert Armstrong, Pietroniro, and Rolfe of the Geography Department, University of Saskatchewan.

⁶ Province of Saskatchewan is organized into four irrigation development areas: South west, Lake Diefenbaker, North, and South east.

Sub-basin	Irrigation District	% of District in Sub-basin	Area of District in Sub-basin (ha.)	
Oldman	Aetna	100%	868	
	Bow River	48%	38,338	
	Leavitt	100%	1,732	
	Lethbridge Northern	100%	57,954	
	Magrath	100%	5,806	
	Mountain View	100%	1,358	
	Raymond	29%	4,592	
	St. Mary	40%	55,601	
	Taber	100%	30,270	
	United	100%	5,723	
Bow	Eastern	45%	49,057	
	Western	55%	15,439	
Red Deer	Bow River	52%	41,036	
	Eastern	52%	60,361	
	Western	45%	12,379	
South Sask. (AB)	Eastern	3%	329	
	Ross Creek	100%	297	
	St. Mary	60%	81,686	
	Raymond	71%	11,465	
Total for the SSRB	(Alberta Portion)		474,291	

Table 5.1. Apportionment of Irrigation Districts to Sub-Basins – Alberta

Source: Armstrong (2005)

Table 5.2.	Irrigation	Districts	within	the	Saskatchewan	Sub-Basin
------------	------------	-----------	--------	-----	--------------	-----------

Sub-basin	Irrigation District	% of District in Sub-basin	Area of District in Sub-Basin (ha.)		
LDDA	Grainland	100%	1,047		
	Luck Lake	100%	3,307		
	Macrorie	100%	847		
	Riverhurst	100%	2,912		
	South Sask. River	100%	15,272		
	Saskatoon South East Water Supply	100%	7,070		
Total LDDA			30,455		
SWDA	Chesterfield	100%	280		
	Hillcrest	100%	1,291		
	Miry Creek	100%	675		
	Moon Lake	100%	616		
	North Waldeck	100%	667		
	River Lake	100%	985		
	Maple Creek	100%	n/a		
Total SWDA			4,514		
Total SSRB (S	askatchewan Portion)		34,969		

Source: Armstrong (2005) and ICDC (2004)

5.5.3 Irrigated Crop Mix

Irrigation crop mix for a sub-basin was estimated as a weighted average of crop mixes in various irrigation districts that exist within the sub-basin. It is assumed that the irrigation crop mix is homogenous in all parts of the district. Data on crop mix for various irrigation districts were obtained from the Alberta Agriculture, Food and Rural Development (AAFRD, 2003 b) for Alberta, and from Mr. John Linsley of Saskatchewan Agriculture and Food for the SSRB (Saskatchewan portion). Details on these crops are shown in Table 5.3. A more detailed distribution by sub-basisns is presented in Section 5.6.

Saskattutwan								
Сгор	Albe	erta	LDDA Saskatchewan					
	Area in Ha	Percent of Total	Area in Ha	Percent of Total				
Alfalfa	108,188	26%	6,822	22.%				
Barley	62,650	15%	1,797	6%				
Barley Silage	36,501	9%	761	3%				
Canola	36,057	9%	3,289	11%				
Dry beans	19,723	5%	2,040	7%				
Lentils	-	-	609	2%				
Peas	2,254	1%	609	2%				
Tame Grass	51,540	12%	305	1%				
HRS* Wheat	34,748	8%	5,086	17%				
SWS** Wheat	14,535	3%						
Durum	26,696	6%	7,492	25%				
Potatoes	17,888	4%	1,035	3%				
Sugar Beet	11,662	3%	0	0				
TOTAL	422,442	100%	30,455	100%				

Table 5.3.Crop Mix for Alberta Irrigation Districts and the LDDA,
Saskatchewan

Hard Red Spring Wheat

** Soft White Spring Wheat

Note: The list of irrigated crops for Alberta is non-exhaustive. These data were obtained from AAFRD (2003). The list for LDDA was derived using the percentages presented by Kulshreshtha, Sobool and Grant (2005), and the total irrigated LDDA component from Armstrong (2005). The proportions of irrigated crops in the SWDA are shown in a latter section of this report.

Source: AAFRD (2003 b); Armstrong (2005); SIDC (2004); Linsley (2005).

5.5.4 Distribution of Irrigated Crops by Method of Water Delivery (Irrigation Technology)

Value of water is determined in part by the efficiency of the water distribution system. Irrigation efficiency of a particular irrigation technology refers to the proportion of water that reaches the root zone of the crop from the water applied in irrigation. However, a given crop in a sub-basin could be irrigated using different technologies. Hence, efficiency for each crop was calculated by multiplying the proportion of cropping extent that particular irrigation technology covers in that sub-basin⁷ (which is shown in Table 5.4). The proportion of water delivery is also somewhat variable across sub-basins. In Alberta, the Oldman River sub-basin has the highest proportion of crops where water is delivered through pivots. This sub-basin also has the highest proportion of specialty crops in the SSRB.

Irrigation Technology	Cereal**	Forage	Misc.	Oilseeds	Specialty Crops**	Grand Total
~		Bow Riv	er Basin			
Gravity	5.98%	17.04%	0.18%	1.60%	1.13%	25.9%
Other	0.12%	0.45%	0.02%	0.03%	0.27%	0.9%
Pivot	17.84%	22.39%	0.03%	7.53%	7.60%	55.4%
Wheels	5.51%	9.40%	0.09%	1.10%	1.68%	17.8%
Grand Total	29.5%	49.3%	0.3%	10.3%	10.7%	100%
		Oldman R	River Basin			
Gravity	0.90%	4.72%	0.11%	0.15%	0.06%	6.0%
Other	0.15%	0.58%	0.10%	0.02%	0.16%	1.0%
Pivot	22.49%	24.01%	0.14%	6.78%	12.97%	66.4%
Wheels	8.37%	14.98%	0.19%	1.46%	1.66%	26.7%
Grand Total	31.9%	44.3%	0.5%	8.4%	14.8%	100%
	SSRB (A	lberta) and	Red Deer H	River Basin		
Gravity	3.21%	10.33%	0.14%	0.81%	0.55%	15.0%
Other	0.13%	0.52%	0.06%	0.02%	0.21%	1.0%
Pivot	20.37%	23.27%	0.09%	7.12%	10.53%	61.4%
Wheels	7.07%	12.44%	0.14%	1.29%	1.67%	22.6%
Grand Total	30.8%	46.6%	0.4%	9.2%	13.0%	100.0%

 Table 5.4.
 Percentage of Crop under Different Irrigation Technology*, SSRB

 Alberta

The irrigation technologies have been apportioned by cropped area of crop groups among the respective sub-basin. Values are expressed in percentage of total area irrigated. For more details, see footnote no. 7

** Cereals include barley and wheat. Forages include alfalfa, barley silage and canola. Specialty crops include dry beans, potato and sugar beet (AAFRD, 2003 c)

Source: Chinn (2005)

Distribution of water delivery methods used by producers is shown in Table 5.5. Unfortunately the data available are only for the LDDA, where the most dominant

⁷ Detailed values are provided only for the Oldman and Bow River Basins or as a roll-up for the two basins combined, Red Deer River and the South Saskatchewan Basin (Alberta portion). The roll-up of the Red Deer and South Saskatchewan Alberta Basin was done because the data available for 2003 was collected specifically for each of the 13 irrigation districts, all of which derive their water either from the Oldman or the Bow Rivers. None of the districts divert water from the Red Deer River Basin. There are other irrigation areas within the Red Deer River Basin, as there are in the Bow and the Oldman, but these are all privately licensed individual projects for which there is currently is no coordinated data collection process. According to Chinn (2005), in general, these private projects typically have a higher proportion of cereals and forages and slightly higher proportion of centre pivot systems.

method of water delivery to crops is pivots – high pressure or low pressure. In the SWDA, since irrigation is organized over small plots, surface irrigation methods are more common.

1 abie 5.5.	Percentage of Cropping Cropped Area under						
	Irrigation Technology, SSRB Saskatchewan,						
	2004						

Water Availability				
45%				
45%				
1.67%				
1.67%				
1.67%				

Source: Linsley (2005).

Data on technical efficiency of various irrigation methods are available only for Alberta. Under standard conditions, a low pressure sprinkler system provides the second highest efficiency in water application, second only to the micro irrigation systems (Table 5.6). The latter are not commonly used on account of their high initial cost.

Irrigation* Technology	Standard	Good					
Gravity-Flood	20%	30%					
Gravity-Developed	54%	62%					
Gravity-Controlled	70%	80%					
Sprinkler-Handmove, solid set or	65%	70%					
Sprinkler-pivot/linear - high pressure	71%	74%					
Sprinkler-pivot/linear - low pressure	75%	80%					
Sprinkler-volume gun, traveler	63%	66%					
Micro	82%	87%					

Table 5.6.On-Farm Irrigation System Efficiencies,
SSRB Alberta

* Each irrigation technology (center pivot, gravity etc.) has a characteristic efficiency of how much of the water supplied actually reaches the roots of the crop. This application efficiency represents different levels of on-farm system management by an irrigation system operator (Heikkila et al., 2002). Each irrigation technology also has a characteristic on-farm irrigation cost, both a capital cost and a marginal cost that varies by quantity of water supplied. Application efficiency and irrigation costs are both discussed in Heikkila et al. (2002).

Source: SSRB (2002)

5.6 Estimation of Marginal Value of Water

5.6.1 Overview of the Methodology

Given the methodology discussed above, steps were undertaken for placing a marginal value to the use of water in irrigation. This value determines the gain (or loss) in producer

surplus if the water is reduced (or increased) by a small amount. In order to undertake this valuation, several steps were required, which are listed below:

Step 1: Selection of crops for valuation. This is described in Section 5.5.2.

- Step 2: Selection of production function to estimate change in total production, which is discussed in Section 5.5.3.
- Step 3: Calculate standard irrigation requirement (with data on precipitation and evapotranspiration). Details on this step are shown in Section 5.5.4.
- Step 4: Using a water production function estimate yield of various crops associated with application of water, and the associated total revenue under standard water requirement. This step is further described in Section 5.5.5.
- Step 5: Compute irrigation cost and net revenue at standard irrigation requirement. Details on this step are provided in Section 5.5.6.

Each of these steps is described below, while the results of the analysis are presented in Section 5.5.7.

5.6.2 Selection of Crops for Estimation of Marginal Value

Since under irrigation, producers have a choice of variety of crops, marginal valuation of irrigation water is restricted to a limited number of crops. Reasons for this choice included the following:

- Production function exhibiting the relationship between water use and productivity of crops are required for each crop.
- Change in the yield requires data on crop water requirements.
- Collection of crop specific data for various sub-basins for all crops was considered a major task, not feasible under the resources available for this study.

For the above reasons, from these crop mix data, ten crops were selected for marginal value estimation. These included: Alfalfa, Barley for grain, Barley for silage, Canola, Dry beans, Tame grass, Hard Red Spring (HRS) wheat, Soft White Spring (SWS) wheat, Potatoes, and Sugar beets. Reason for the selection of these crops was the availability of information required for estimation of marginal value of irrigation water.

5.6.3 Crop Yield Production Functions for Irrigation

In order to assess the change in the producer surplus associated with a small unit increase in water application, a production function showing the relationship between yield of a crop and the amount of water applied to it is required. These were obtained for southern Alberta from Heikkila et al. (2002). The equation suggested for this calculation is shown in Equation 5.1.

$$Y_a = K_{av} \cdot [A_0 + \{A_1 \cdot (ET_a / ET_p)\} + \{A_2 \cdot (ET_a / ET_p)^2\}] \cdot Y_m$$
(5.1)

where;

- Y_a = actual yield from each crop under prevailing water supply conditions (kg/ha)
- Y_m = maximum yield attainable from each crop where no inputs are limiting (kg/ha)

ETa = actual evapotranspiration

- ETp = potential evapotranspiration
- K_{ay} , A_0 , A_1 , and A_2 are crop specific coefficients.

In order to estimate the crop yields under different levels of water application, one needs values of various parameters in Equation 5.1. The crop specific coefficients were also obtained from Heikkila et al. (2002) and are shown in Table 5.7. The aforementioned TPP estimation was made at the point where irrigation met the total deficit between crop water demand and precipitation.

Parameters	Alfalfa	Barley	Barley silage	Canola	Dry beans	Tame grass	HRS wheat	SWS wheat	Potato	Sugar beets
KAY & KPY	1.44	1.18	1.18	1.22	1.22	1.2	1.2	1.2	1.19	1.19
Ao	-0.297	-0.299	-0.201	0.021	-0.65	-0.334	-0.291	-0.291	-0.618	-0.501
Al	1.272	1.696	2.763	1.121	2.498	1.781	1.628	1.628	2.467	2.528
A2	-0.313	-0.644	-0.244	-0.36	-1.038	-0.701	-0.557	-0.557	-1.014	-1.144

 Table 5.7.
 Coefficients for Selected Crops in Alberta

Source: Heikkila et al. (2002)

These production functions were based on certain coefficients for crop growth and evapotranspiration for the region. No models were found for Saskatchewan. It was therefore, assumed that the southern Alberta model, adjusted to local climatic conditions, is applicable to Saskatchewan as well.

5.6.4 Standard Irrigation Requirement Calculation

The total moisture requirements of various crops are supplied by precipitation and supplemented by irrigation. The first step in determining the marginal value of water is to determine the moisture availability to the crops from natural conditions, and their respective requirements for optimal crop growth. This first step required collecting data
on potential transpiration (ETp) and effective precipitation, in addition to other aspects of climate on irrigation systems. These data for various sub-basins of SSRB in Alberta were obtained from Chinn (2005) and Heikkila et al. (2002).

Variability in effective precipitation is a characteristic of both crops and sub-basins. This is because each crop has a different growing period compared with other crops. Therefore, even if they are in the same field within the same sub-basin, they would draw different quantities of water from precipitation. The average effective precipitations for individual crops by sub-basin are depicted in Table 5.8. Typically, in the various sub-basins, effective precipitation is higher for alfalfa, potatoes, and sugar beets, and lower for barley silage, barley and canola.

Table 5.8.	Mean	Effective	Precipitation	by	Crops	and	by	Sub-basin
	mm/ha	growing se	ason)					

Sub- Basin	Alfalfa	Barley	Barley silage	Canola	Dry beans	Tame grass	HRS wheat	SWS wheat	Potato	Sugar beets
SSRB- AB*	232	147	134	155	144	232	155	155	211	184
Red Deer	250	164	143	175	173	250	175	175	230	209
Oldman	271	173	159	182	169	182	182	182	251	214
Bow	259	168	149	178	165	259	178	178	237	206
SSRB- SK**	378	204	191	204	207	232	205	210	211	N.A.

Mean effective precipitation values are from 1928 to 1995 and in case of Alfalfa in the Bow basin from 1928 to 2003. Credits for the data are attributed to the Gridded Prairie Climate Database developed initially by Agriculture and Agri-Food Canada and Environment Canada.

** Separate precipitation values for SSRB-SK were not available; hence average values for the entire SSRB were used.

Source: Chinn (2005).

To calculate crop yield using Equation 1, one needs to know, in addition to effective precipitation, potential evapotranspiration (ETp), and actual evapotranspiration (ETa) for various crops within a sub-basin. The potential evapotranspiration is used in reference to a particular location, and varies from sub-basin to sub-basin (AAFRD, 2002). The product of ETp and a crop specific coefficient helps arrive at crop evapotranspiration (ETc). However, ETc assumes that the crop grows under no water constraints and when the slightest water constraint is evident, the physiology of the crop (such as closing of stomata) reduces the evapotranspiration. This reduced evapotranspiration actually experienced in the field is called ETa. The product of ETc and a crop scaling factor produce ETa and the aforementioned crop production or yield function relates yield to ETa (AAFRD, 2002). Hence, the water required by precipitation and irrigation (in case of irrigated crops) would have to meet ETa. The ETp and ETa values are summarized by crops for Alberta sub-basin in Table 5.9.

Particulars	Alfalfa	Barley	Barley silage	Canola	Dry beans	Tame grass	HRS* wheat	SWS** wheat	Potatoes	Sugar beets
Bow River Ba	isin							-		
ETp	896	591	518	635	601	896	635	635	837	721
ETa	573	344	319	369	297	296	404	404	520	484
Oldman Rive	er Basin					-				
ETp	881	578	505	622	591	880	622	622	821	710
ETa	563	338	312	362	294	290	398	398	513	479
Red Deer Riv	ver Basin	-								
ETp	880	584	513	628	594	880	628	628	824	711
ETa	565	341	316	365	293	291	400	400	513	476
SSRB (Alber	ta Basin)**	k W								
ЕТр	904	596	521	641	610	904	641	641	845	731
ETa	579	349	323	374	303	299	411	411	528	492
SSRB (Saska	tchewan B	asin)"								
ЕТр	906	644	570	690	641	973	690	690	912	N.A.
ETa	617	369	344	394	312	320	432	432	558	N.A.
1.716	017	507	2.4	571	-14	520			000	

 Table 5.9.
 Model Values of ETa and ETp (mm/ha/growing season) by Crop and Sub-Basin

Hard Red Spring;

** Soft White Spring

*** ET values are from 1928 to 1995 and in case of Alfalfa in the Bow basin from 1928 to 2003. These data are credited to the Gridded Prairie Climate Database developed initially by Agriculture and Agri-Food Canada and Environment Canada. These values are reported even in situation where these crops are not grown.

Separate ET values for SSRB-SK were not available, hence average values for the entire SSRB were used.

Source: Chinn (2005)

5.6.5 Total Yield under Standard Water Requirements and Total Revenue Calculation

The value of coefficients in Table 5.7 were applied to obtain total yield (or TPP), which was a starting point for the estimation of gross revenues from irrigated production. To complete this calculation, average price for these products is required. In this study these prices were average 10-year nominal crop prices. These data were obtained from SAFRR (2005) and AAFRD (2003 b). Where the aforementioned sources could not provide commodity prices, crop price indices from Statistics Canada were used to adjust real crop prices reported by Heikkila et al. (2002). Total physical product from irrigation at standard crop requirement levels are shown in Table 5.10.

5.6.6 Marginal Irrigation Cost and Net Revenue at Standard Irrigation Requirement

The marginal value product, as described above, is net of any additional cost incurred in connection with application of water. Conceptually, these costs may include labor, repair

and maintenance and energy costs. According to Heikkila et al. (2002), these costs differ only by irrigation technology, and not necessarily by crops grown. These costs have been estimated for various irrigation technologies by Heikkila et al. (2002). The differential costs with each additional unit of water include labor, repair and maintenance and energy costs. These remain constant for the entire range of water application. These costs are shown in Table 5.11.

		0								
Sub- Basin	Alfalfa	Barley	Barley silage	Canola	Dry beans	Tame grass	HRS wbeat	SWS wheat	Potato	Sugar beet
Bow	13,081	5,447	25,163	2,959	2,301	4,253	3,719	5,379	34,430	57,935
Oldman	12,829	5,321	24,540	2,924	2,285	4,202	3,649	5,278	34,122	57,509
Red Deer	12,876	5,382	24,879	2,936	2,252	4,243	3,673	5,313	34,057	57,127
SSRB- AB	13,210	5,528	25,494	2,991	2,385	4,276	3,781	5,470	34,996	58,854
SSRB- SK	14,421	5,878	27,327	3,101	2,463	4,382	3,987	5,767	36,020	-

 Table 5.10.
 Total Physical Product (Crop Yields) in Kg/Ha under Standard

 Irrigation Requirements

-- Not applicable

Table 5.11. Marginal Cost of Irrigation by System

System	Labor Cost (\$/mm/ha)	Repair and maintenance (\$/mm/ha)	Energy Cost (\$/mm/ha)
Gravity-Flood	0.101	0.0065	0.000
Gravity-Developed	0.079	0.0200	0.000
Gravity-Controlled	0.045	0.0490	0.037
Sprinkler-Hand-move, Solid set or Wheel move	0.067	0.0570	0.195
Sprinkler-Pivot-High pressure	0.022	0.1090	0.220
Sprinkler-Pivot-Low pressure	0.022	0.1110	0.160
Sprinkler-volume gun, traveler	0.045	0.0840	0.350
Micro	0.027	0.1850	0.067

Source: Heikkila et al. (2002).

5.6.7 Estimation of Marginal Value

In order to assess the marginal value of water for various crops in a sub-basin of the SSRB, water availability was reduced and its consequences for the irrigation farmer estimated. This was accomplished by assuming that water available for irrigation is reduced by one hectare-inch (or 254 m^3). Various crop water production functions were used under these reduced water applications to estimate net revenue. Value of lost production was compensated by a reduction in costs to yield net revenue loss to producer from the decreased amount of water. The change in net revenue was divided by the reduction in irrigation water application (254 m^3). This was subsequently converted into value of water per dam³. Estimated values for various crops and sub-basins are shown in Table 5.12.

Sub- Basin	Alfalfa	Barley	Barley silage	Canola	Dry beans	Tame grass	HRS wheat	SWS wheat	Potato	Sugar beet
Bow	196	128	111	112	644	160	93	147	1,114	282
Oldman	189	131	114	116	658	169	94	151	1,153	290
Red Deer	185	129	113	114	656	165	94	149	1,141	290
SSRB- AB	185	129	113	113	662	163	94	149	1,133	286
SSRB-SK	141	181	118	140	661	159	96	151	1,094	N.A.

Table 5.12. Marginal Value Product by Crop and Sub-Basin (\$/dam³)

Generally speaking, marginal value of water for specialty crops, such as potatoes, dry beans, and sugar beets, was higher than that for other more traditional crops. Forages such as alfalfa had a relatively higher marginal value than say hard red spring wheat, but still lower than that for the specialty crops. One must note that these values are only for production of the forage. Since reduced forage production may have implications for livestock production, these values may be underestimated.

Three striking features of these estimates are:

- (1) Marginal values of water in various sub-basins are fairly close. This is to be expected since all changes in TPP are based on the same model, and irrigation practices are fairly uniform across sub-basins. In addition, climatic features of the sub-basins are not that distinct from each other.
- (2) The Marginal Value Product (MVP) of water (equivalent to marginal value of water) varies significantly across crops. Cash crops, such as potatoes, and sugar beets score the higher MVP of water. For these crops, irrigation is highly desirable from an economic point of view. This is not to be interpreted to be suggesting that for these crops irrigation is a virtual necessity, since potatoes can be grown under dryland conditions.
- (3) One would note that these values of water are relatively high. This is because they were estimated under the assumption that other costs, other than water application costs, do not change. Thus, these reflect the cost to producers if the water application rate is reduced on account of water shortages, and no other production related adaptation is undertaken. Again the caution is advised since this a short-run situation and the producers do not have options to make adjustments.

In order to represent short-run costs of water shortages, one needs compare the entire range of water production. This entailed reducing water application to the point that there was no irrigation provided to that crop. Crops were then arranged by the relative level of marginal value of water. Total water use was estimated by multiplying each crop by their respective area. A plot of amount of water used and its marginal value was developed is shown in Figures 5.3. to 5.7. for each of the five sub-basins.

Figure 5.3. Water Allocation among Crops in the Bow River Sub-Basin

Figure 5.4. Water Allocation among Crops in the Oldman River Sub-Basin

Figure 5.5. Water Allocation among Crops in the Red Deer Basin

Figure 5.6. Water Allocation among Crops in the SSRB-Alberta Sub-Basin

Figure 5.7. Water Allocation among Crops in the SSRB-Saskatchewan Sub-Basin

In most cases, marginal value product for each crop was separable, except that in some cases a small degree of overlap did exist. For example, the overlap between barley and tame grass in the Oldman river sub-basin shows that it would be efficient to first allocate water for barley up until cumulative irrigation reaches 45,500 dam³ and then allocate water to tame grass up until 49,000 dam³ before re-allocating water for the rest of barley. In the Saskatchewan sub-basin of the SSRB there was no data on cultivated extent for sugar beets, SWS wheat, or barley.

A perusal of these five figures indicates a fair amount of similarities in all regions. Assuming rationality on the part of producers, it appears that under water shortages, hard wheat and alfalfa would be the crops not preferred for irrigation. However, this reasoning will have to be altered if rotational and disease considerations dictate their inclusion in the irrigation priority scheme. The sharp drop in all five basins is reflective of relative proportion of specialty crops (potatoes, sugar beets, and dry beans) grown in that subbasin. In all five sub-basins, marginal value of water becomes lower than \$200 fairly early, and the values stay fairly flat from that point onwards. Much of the shortage would then impact the crops with lower marginal value. It should be noted that these values are in the crop production only, and do not consider any forward linkages of these crops (particularly those of forages through cattle production). Also linkages with non-farm sectors are also not included in these values.

It should be noted that the above valuation utilized data for the LDDA in Saskatchewan. Information on water production function for the SWDA was very poor, and, therefore, not included.

5.7 Average Value of Water

As discussed previously, the two values of significance in the context of water allocation among competing crops are marginal and average valuation. The first type of value may be useful in the decisions of producers of allocating water among various crops, as well those made by water management agencies in terms of estimating the economic cost of reduced supply in the very short run. However, these values do not reflect whether irrigation should be developed in the long run. This requires the gain in social well-being from using irrigation water and converting dryland production of crop to irrigated production. This requires knowledge of average value of irrigation water in the short-run and in the long-run. These estimates are provided in this section.

5.7.1 Methodology

The method of estimation for estimating the average value of water in this study was based on a change in the producer surplus under dryland and irrigated crop production systems. Much of this analysis is based on secondary data. Although collection of primary data on production budgets under the two systems would have been preferable, such was not possible on account of resource constraints. However, in order to maintain comparability between the two systems, data were collected on similar landscape with similar bio-physical characteristics.

The data needed for this assessment included the following for each of the two systems of production: Crop mix, crop budget, and water requirements for various crops. For Saskatchewan, dryland and irrigated crop budgets were obtained from Saskatchewan Agriculture and Agri-Food and Rural Revitalization (SAFRR, 2004) and Irrigation and Crop Diversification Corporation (ICDC, 2004b). For Alberta, these data for the four sub-basins were obtained from AAFRD (2003a) and AAFRD (2003b).

Short-run Average Value

Short-run average value of water in various sub-basins of the SSRB was computed as the change in producer surplus per unit of water between dryland and irrigated systems. This was calculated as the difference between weighted producer surpluses per hectare in the short-run dryland production system from those under irrigated production. This difference was then divided by the amount of water typically used for irrigation, to obtain average value per unit of irrigation water. All major crops were included in this analysis. Area under that crop was used as the weight for this calculation.

The short-run net returns were estimated as the difference between returns from a crop and short-run production costs. The production costs included for this calculation were:

- Seed treatment and cleaning costs,
- Fertilizer cost,
- Chemicals cost,
- Machinery operating (fuel and repair) costs,
- Custom work and hired labor costs,
- Crop insurance premium,
- Interest on operating capital (at 5.3% in Saskatchewan and 5.5% in Alberta), and
- Variable overhead costs (taxes, utilities, building repairs and insurance, auto expenses, legal and accounting fees).

Producer surplus under any of the tow production systems was equated to the net returns to producers (in the short-run). This was estimated as the difference between gross returns and short-run cost of production. The former was estimated using the average yield for various crops and their respective price per unit. Crop prices used were the same as those used for calculating marginal value of water.

Weighted net return under dryland or irrigated production systems were estimated using the sub-basin specific crop mix. However, for Saskatchewan an additional consideration was important. Water from the South Saskatchewan in the SSRB is used for two types of irrigation. As shown in Table 5.2, 13% of the total irrigated area in the SSRB-Saskatchewan area in the SWDA while the remaining 87% is used for irrigation in the LDDA portion of the SSRB. Irrigation water delivery systems and crop mixes in the two sub-regions of Saskatchewan are distinctly different. In the LDDA, almost all irrigation areas are organized under Irrigation Districts. In contrast, in the SWDA, much of the irrigation is organized as Water Users Districts, where much of irrigation activity is confined to small-plot irrigation. In the SWDA, much of the irrigation is for forages to support the need of cattle herds in the region. The costs of production in the two subregions are also very different, partly because of irrigation water delivery system, and partly due to other physical features of the region. For these reasons, analysis for Saskatchewan portion of the SSRB was divided into two parts; one, for the LDDA, and the other for the SWDA. In the final valuation, these two regions were combined together.

The crop budgets for irrigated and dryland production systems in Alberta were for the Dark Brown soils. Information on the crop mix under the dryland production system was obtained from Statistics Canada (2005). For the LDDA, this information was for the Census Agricultural District (CAR) 6A, whereas for the SWDA, it was for the CAR 3BN. Costs of production budgets for Alberta were obtained from AAFRD (2004), whereas those for the LDDA from ICDC (2004b). Similar budgets for the SWDA were obtained from Prairie Farm Rehabilitation Administration⁸. Crop mixes under irrigated

8

Personal communications with Mr. Mark Pederson, PFRA, March 2004.

production system for Alberta were obtained from AAFRD (2004). For Saskatchewan these were obtained from Kulshreshtha, Sobool and Grant (2005).

Long-run Average Value

Basic methodology for the estimation of long-run value of water in the SSRB was the same as followed for the short-run valuation. The only difference was that in estimating the producer surplus, long-run costs associated with the two production systems were used. The long run net returns involved, in addition to the aforementioned short-run costs, those associated with fixed investment, this included machinery and building depreciation (at 10 % for Saskatchewan), opportunity cost of investment in them (at the going rate of interest) and in the case of irrigated production systems, the investment cost of irrigation equipment. Thus, the net return reflects returns to land, owner/operator management and labor.

5.7.2 Data Requirements for the Estimation of Average Value of Irrigation Water

Producers under irrigation have a different choice of crops. It is generally believed that through such choices, irrigation brings diversification and stability to the region. These crop mixes that are presented in Table 5.13. describe the irrigated crop mix in various sub-basins of Alberta SSRB. A comparable dryland crop mix for the same regions is shown in Table 5.14. The former was derived from AAFRD (2003 b) but excluded some minor crops with less than a cumulative area of 1000 ha. The latter was derived first by cumulating the entire cropping extents for the Census Agricultural Regions 1, 2, 3, and 5 for Alberta, and then by subtracting the irrigated cropped area. Overall, it shows that irrigated cropping areas include a greater proportion of cash crops, such as potatoes and sugar beet and the dryland areas include a relatively larger area of cereals and summerfallow.

The irrigated cropped area for the SWDA and LDDA were obtained from Kulshreshtha, Sobool and Grant (2005). For the dryland crop mix in the SWDA, the same crop proportions were assumed. This is under the assumption that dryland and irrigated rotations are very similar in nature. The relative distribution of the irrigated cropland for the LDDA is found in Table 5.15., while the corresponding dryland crop mixes for the region in Table 5.16. Table 5.17. lists the crops in the SWDA and the percentage of total irrigation used for each crop.

The next step in calculating the short run and long run average value of water was estimation of net returns (both short-run and long-run) from crops grown under dryland and irrigation production systems. As noted above, these estimates were based on availability of crop budgets under the two production systems. For some minor crops, such returns could not be estimated and, therefore, were not included in the analysis. Furthermore, for various sub-basins of Alberta portion of the SSRB, budgets were available at the provincial level. Thus, it was assumed that cost of production of a crop did not vary across sub-basins in Alberta.

Crops	Oldman	Bow	Red Deer	SSRB Alta.	Total Alberta SSRB
Alfalfa Hay	35,783	20,718	29,311	17,069	102,881
Alfalfa Silage	2,955	959	1,263	130	5,307
Timothy	9,763	1,341	3,233	3,754	18,091
Triticale Silage	2,330	402	747	1,255	4,733
Barley	28,497	8,656	13,106	12,391	62,650
Barley Silage	21,287	4,663	5,450	5,101	36,501
Corn Silage	9,672	867	2,022	1,970	14,532
Grass Hay	6,697	2,122	2,660	1,812	13,291
Green Feed	2,041	2,241	2,880	501	7,664
Native Pasture	2,130	142	187	617	3,077
Canola	15,150	3,584	8,012	9,311	36,057
Flax	1,210	327	909	811	3,256
Fresh Peas	1,429	30	315	480	2,254
Dry Beans	9,209	479	3,260	6,775	19,723
Tame Grass	13,935	13,273	18,095	6,236	51,540
HRS Wheat	13,833	4,645	8,241	8,028	34,748
CPS Wheat	1,248	2,838	3,276	1,163	8,525
SWS Wheat	6,912	733	5,169	1,721	14,535
Durum	12,781	355	3,387	10,173	26,696
Winter Wheat	914	125	291	806	2,136
Potatoes	9,815	540	2,900	4,633	17,888
Sugar Beets	6,541	157	2,670	2,294	11,662
Oats	1,052	988	1,397	285	3,722
Summerfallow	307	829	1,007	271	2,414
Total	215,491	71,014	119,790	97,588	503,883

Table 5.13. Irrigated Cropped Area in SSRB Sub-Basins of Alberta (ha), in 2001

Source: AAFRD (2003 b)

Spring wheat (excluding durum) 1,169,291 22.10% Durum wheat 349,715 6.60% Winter wheat 25,801 0.50% Oats 191,534 3.60% Barley 1,151,254 21.70% Mixed grains 84,260 1.60% Corn for grain 1,244 0.02% Total rye 28,964 0.50% Alfalfa and alfalfa mixtures 616,190 11.60% All other tame hay 291,602 5.50% Canola (rapeseed) 277,603 5.20% Flaxseed 2,322 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 6,227 0.10% Other dry beans 6,227 0.10% Chick peas 37,096 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20%	Crops	Dryland Cropped Area (ha)	Percent of Total
Durum wheat 349,715 6.60% Winter wheat 25,801 0.50% Oats 191,534 3.60% Barley 1,151,254 21.70% Mixed grains 84,260 1.60% Corn for grain 1,244 0.02% Total ryc 28,964 0.50% Alfalfa and alfalfa mixtures 616,190 11.60% All other tame hay 291,602 5.50% Canola (rapesed) 277,603 5.20% Flaxseed 3,232 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20%	Spring wheat (excluding durum)	1,169,291	22.10%
Winter wheat 25,801 0.50% Oats 191,534 3.60% Barley 1,151,254 21.70% Mixed grains 84,260 1.60% Corn for grain 1,244 0.02% Total rye 28,964 0.50% Alfalfa and alfalfa mixtures 616,190 11.60% All other tame hay 291,602 5.50% Canola (rapeseed) 277,603 5.20% Flaxseed 3,232 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Ottal dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Chary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Chick peas 3,076 0.06% S	Durum wheat	349,715	6.60%
Oats 191,534 3.60% Barley 1,151,254 21.70% Mixed grains 84,260 1.60% Corn for grain 1,244 0.02% Total ryc 28,964 0.50% Alfalfa and alfalfa mixtures 616,190 11.60% All other tame hay 291,602 5.50% Canola (rapeseed) 277,603 5.20% Flaxseed 3,232 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 12,029 0.20% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Other field crops 3,076 0.06%	Winter wheat	25,801	0.50%
Barley 1,151,254 21.70% Mixed grains 84,260 1.60% Corn for grain 1,244 0.02% Total rye 28,964 0.50% Alfalfa and alfalfa mixtures 616,190 11.60% All other tame hay 291,602 5.50% Canola (rapesed) 277,603 5.20% Flaxseed 3,232 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 11,162 0.02% Sugar beets 12,029 0.20% Sugar beets 12,029 0.20% Other field crops 3,076 0.06% Summerfallow 834,805 15.80%	Oats	191,534	3.60%
Mixed grains 84,260 1.60% Corn for grain 1,244 0.02% Total rye 28,964 0.50% Alfalfa and alfalfa mixtures 616,190 11.60% All other tame hay 291,602 5.50% Canola (rapeseed) 277,603 5.20% Flaxseed 3,232 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Quary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80%	Barley	1,151,254	21.70%
Corn for grain 1,244 0.02% Total rye 28,964 0.50% Alfalfa and alfalfa mixtures 616,190 11.60% All other tame hay 291,602 5.50% Canola (rapeseed) 277,603 5.20% Flaxseed 3,232 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80%	Mixed grains	84,260	1.60%
Total rye 28,964 0.50% Alfalfa and alfalfa mixtures 616,190 11.60% All other tame hay 291,602 5.50% Canola (rapeseed) 277,603 5.20% Flaxseed 3,232 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 12,029 0.20% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Corn for grain	1,244	0.02%
Alfalfa and alfalfa mixtures 616,190 11.60% All other tame hay 291,602 5.50% Canola (rapeseed) 277,603 5.20% Flaxseed 3,232 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Total rye	28,964	0.50%
All other tame hay 291,602 5.50% Canola (rapeseed) 277,603 5.20% Flaxseed 3,232 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 11,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Other field crops 3,076 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Alfalfa and alfalfa mixtures	616,190	11.60%
Canola (rapeseed) 277,603 5.20% Flaxseed 3,232 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Other field crops 3,076 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80%	All other tame hay	291,602	5.50%
Flaxseed 3,232 0.06% Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Other field crops 3,076 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80%	Canola (rapeseed)	277,603	5.20%
Mustard seed 22,848 0.40% Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80%	Flaxseed	3,232	0.06%
Sunflowers 550 0.01% Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Mustard seed	22,848	0.40%
Dry field peas 104,093 2.00% Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Sunflowers	550	0.01%
Lentils 7,063 0.10% Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Dry field peas	104,093	2.00%
Total dry field beans 40,090 0.80% Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80%	Lentils	7,063	0.10%
Dry white beans 6,227 0.10% Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Total dry field beans	40,090	0.80%
Chick peas 37,096 0.70% Other dry beans 15,486 0.30% Canary seed 11,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Dry white beans	6,227	0.10%
Other dry beans 15,486 0.30% Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Chick peas	37,096	0.70%
Canary seed 1,162 0.02% Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Other dry beans	15,486	0.30%
Sugar beets 12,029 0.20% Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Canary seed	1,162	0.02%
Triticale 15,608 0.30% Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Sugar beets	12,029	0.20%
Potatoes 4,940 0.10% Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Triticale	15,608	0.30%
Other field crops 3,076 0.06% Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Potatoes	4,940	0.10%
Summerfallow 834,805 15.80% Total 5,295,763 100.00%	Other field crops	3,076	0.06%
Total 5,295,763 100.00%	Summerfallow	834,805	15.80%
	Total	5,295,763	100.00%

Table 5.14. Dryland Cropped Area for SSRB Sub-Basins, (Alberta, 2001)

Source: Original data from Statistics Canada (2005)

Crops	Irrigated (ha)	Percent of Total
Spring wheat	3,995	11.9%
Durum	897	2.7%
Barley/Oats	3,752	11.1%
Canola	5,762	17.1%
Peas	423	1.3%
Lentils	227	0.7%
Beans	1,184	3.5%
Silage crops	2,512	7.5%
Potatoes	3,739	11.1%
Alfalfa mix.	9,883	29.4%
Tame Pasture	1,287	3.8%
TOTAL	33,661	100.0%

 Table 5.15.
 Irrigated Crop Cropped Area, LDDA

 Saskatchewan, 2004

Source: Linsley (2005 b)

Table 5.16. Dryland Crop Cropped Area for LDDA, Saskatchewan, 2000

Crops	Total Cropped Area (ha)	Percent of Total
Spring wheat	497,876	21.7%
Durum wheat	279,234	12.2%
Winter wheat	3,609	0.2%
Oats	54,327	2.4%
Barley	183,939	8.0%
Mixed grains	6,009	0.3%
Total rye	6,127	0.3%
Alfalfa mix.	125,010	5.5%
Hay/fodder	36,882	1.6%
Canola	133,681	5.8%
Flaxseed	14,643	0.6%
Mustard seed	15,419	0.7%
Potatoes	2,552	0.1%
Dry field peas	137,442	6.0%
Lentils	171,035	7.5%
Total dry field beans	96,908	4.2%
Chick peas	95,893	4.2%
Canary seed	16,116	0.7%
Forage seed for seed	3,636	0.2%
Other field crops	4,367	0.2%
Summerfallow	408,129	17.8%
Total	2,292,834	100.0%

Note: Data for CAR 6A.

Source: Statistics Canada (2005).

Saskatchewan					
Crops	Percent of the Total Irrigated Area in the SWDA Region				
Wheat	3.00%				
Durum	4.00%				
Oats/barley	6.00%				
Canola	2.00%				
Lentils	2.00%				
Hay (Alfalfa)	82.40%				
Total	100.00%				

Table 5.17. Cropping Area for the SWDA*, Saskatchewan

It should be noted that this information is for entire SWDA and not just for the water user districts within the SSRB. Source: Kulshreshtha and Russell (1995)

5.7.3 Estimated Net Returns from Irrigation by Crops

Short-run and long-run net returns from irrigated and dryland production systems were estimated using 10-year average prices. Results for Alberta are shown in Tables 5.18. and 5.19. respectively for irrigation and dryland crop production. Under irrigation, the crop that provides the highest level of net return, both in the short-run and long-run is alfalfa silage, used primarily for dairy cattle. Potatoes were the next profitable crop, followed by peas, lentils, and certain cereals. Some crops, such as green feed, did not generate a positive net return. However, these may be seeded for rotational requirement as cover crops during the initial establishment period for the alfalfa rotation.

Results for Saskatchewan LDDA irrigation and dryland net returns are shown in Tables 5.20 and 5.21, respectively.

Under the dryland production systems, most crops showed positive net returns. Crops that fared better included forage crops, lentils, and specialty crops, such as chick peas, canary seed, among others. However, in the long-run, many crops showed a negative net return. Exceptions to this were durum wheat, winter wheat, alfalfa and other forages, lentils and specialty crops.

5.7.4 Estimated Average Value of Irrigation Water by Sub-Basins

Alberta Sub-Basins

Average value of water was estimated as the ratio of weighted average net additional return from irrigation (over and above dryland production) and the amount of water used for irrigation. Since water use by crops is not available, and could vary from year to year, only sub-basin level estimates of average values could be made. The weighted average net return was estimated both for irrigation and dryland production systems first. The

net return was estimated both for irrigation and dryland production systems first. The weights chosen for this calculation were the relative area under various crops, as shown in the earlier sections. Table 5.22 shows the weighted irrigated short-run and long-run net returns for the four Alberta sub-basins of SSRB. These net returns were very similar in magnitude, caused in part by the assumption that cost of production in various sub-basins was identical. Differences were only present due to crop mix. The short-run net returns varied from \$340 per ha in the Bow River basin to \$398 per ha in the Oldman River basin.

Crops	Short-run Returns(S/ha)	Long-run Returns (\$/ha)
Alfalfa Hay	\$334.26	\$136.49
Alfalfa (Two cuts)	\$613.90	\$445.40
Alfalfa (3 cuts)	\$711.86	\$543.36
Alfalfa or Triticale Silage	\$3,076.26	\$2,915.56
Timothy	\$376.16	\$115.45
Barley	\$95.11	\$-71.46
Barley Silage	\$304.54	\$151.57
Corn Silage	\$723.22	\$536.88
Grass Hay	\$334.26	\$136.49
Green Feed	-\$32.74	-\$145.57
Native Pasture	\$90.67	-\$77.83
Canola	\$212.97	\$27.02
Flax	\$350.37	\$237.05
Fresh Peas	\$256.88	\$131.38
Dry Beans	\$175.46	-\$85.01
Tame Grass	\$90.67	-\$77.83
HRS Wheat	\$196.35	-\$12.59
CPS Wheat	\$383.90	\$271.07
SWS Wheat	\$340.69	\$131.75
Durum	\$388.02	\$179.08
Potatoes	\$1,765.70	\$884.56
Sugar Beets	\$66.28	-\$229.85
Oats	\$71.52	\$70.46
Summerfallow	-\$67.88	-\$95.84

 Table 5.18.
 Irrigated Net Returns in the Southern Alberta, by Crops

Crops	Short-run** Return (\$/ha)	Long-run** Return (\$/ha)
Spring wheat (excluding	\$73.29	\$9.07
Durum wheat	\$174.06	\$109.84
Winter wheat	\$79.75	\$15.53
Oats	\$13.20	-\$26.53
Barley	\$37.93	-\$26.29
Alfalfa and alfalfa	\$163.24	\$133.50
All other tame hay and	\$217.11	\$152.89
Canola (rapeseed)	\$46.84	-\$17.38
Flaxseed	\$136.90	\$76.75
Mustard seed	\$80.72	\$23.74
Sunflower	\$216.53	\$144.20
Dry field peas	\$97.07	\$32.85
Lentils	\$154.42	\$90.20
Chick peas	\$109.56	\$39.78
Canary seed	\$126.65	\$66.50
Summerfallow	-\$67.88	-\$95.84
Weighted Net Return*	\$65.48	\$12.31

Table 5.19.Weighted Dryland Net Returns for the Alberta Portion of
the SSRB

Weighted net return is estimated by weighting each crop by the respective proportion of total cropped area.

Table 5.20.	Weighted Irrigated	Net Returns for t	ne LDDA.	Saskatchewan
	TT CIENCOU ILLIENCOU	TACC RECENTING TOT C		Derometerie wen

Crops	Percent of Total Irrigated Area	Short Run Return (\$/ha) Long Run Retu (\$/ha)	
Spring wheat	11.9%	\$216.24	\$103.41
Durum	2.7%	\$355.51	\$242.68
Barley/Oats	11.1%	\$71.52	\$70.46
Canola	17.1%	\$532.11	\$418.76
Peas	1.3%	\$256.88	\$131.38
Lentils	0.7%	\$247.84	\$122.34
Beans	3.5%	\$728.12	\$577.52
Silage crops	7.5%	\$515.70	\$346.05
Potatoes	11.1%	\$2,708.31	\$1,827.16
Alfalfa mix.	29.4%	\$552.87	\$397.35
Tame Pasture	3.8%	\$90.67	-\$77.83
Weighted Net Returns	100%	669.81	463.54

Crops	Area* in Ha.	Short-run** Long-run** Dryland Return (\$/ha) (\$/ha)	
Spring wheat	497,876	\$57.30	\$-2.84
Durum wheat	279,234	\$102.17	\$33.33
Winter wheat	3,609	\$183.07	\$105.86
Oats	54,327	\$13.20	\$-26.53
Barley	183,939	\$168.66	\$108.51
Alfalfa mix.	125,010	\$81.01	\$71.27
hay/fodder	36,882	\$217.11	\$152.89
Canola	133,681	\$118.76	\$58.61
Flaxseed	14,643	\$136.90	\$76.75
Mustard seed	15,419	\$80.72	\$23.74
Sunflowers	706	\$216.53	\$144.20
Potatoes	2,552	\$1,674.23	\$805.20
Dry Field peas	137,442	\$97.07	\$32.85
Lentils	171,035	\$201.04	\$27.67
Chick peas	95,893	\$109.56	\$39.78
Canary seed	16,116	\$125.78	\$56.94
Caraway seed	168	\$-37.71	\$-178.01
Summerfallow	408,129	\$-67.88	\$-95.84
Total	2,177,661	-	_
Weighted Return		\$67.05	\$17.51

Table 5.21. Weighted Dryland Net Returns for the LDDA, Saskatchewan

 The total cropped area here is needed for weighting and so only includes the cropped areas of those crops for which net return budgets are available.

** Values of net returns were rounded to the nearest integer

Sub-Basin	Short-run Weighted Net Returns (S/ha)	Long-run Weighted Net Returns (\$/ha)	
Oldman	\$398.23	\$176.43	
Bow	\$340.00	\$164.59	
Red Deer	\$352.67	\$155.77	
SSRB-AB	\$362.27	\$136.27	

Table 5.22.Weighted Average Net Returns fromIrrigation, Alberta Sub-Basins

The long-run net returns from irrigation were also positive but slightly lower than the short-run returns. Here the returns varied from \$136 per ha for the SSRB (AB) sub-basin to a high of \$176 per ha for the Oldman River sub-basin.

Weighted net return from dryland production in the region was estimated to be \$67.05 per ha in the short-run and \$17.51 per ha in the long run (as shown in Table 21). As one would expect, these values are lower than those under irrigation. Since dryland crop mix is not available by sub-basins, the same value was applied to all four Alberta sub-basins.

Saskatchewan Sub-Basin

The same computations were repeated for the Saskatchewan portion of the SSRB. As noted above, on account of different crop production and irrigation technology, this estimation was done separately for the LDDA and SWDA portion of the sub-basin. Table 5.24 displays the irrigated and dryland net returns for both the LDDA and SWDA. The weighted net return from irrigation in the LDDA was higher than that in the SWDA. In this portion of the sub-basin, short-run net returns were estimated to be \$670 per ha, in part due to high returns from potatoes and a relatively high proportion of this crop. In the long-run the net returns declined to \$464 per ha. The dryland net returns in the Area were relatively small - \$67 per ha in the short-run and only \$17 in the long-run. The weighted average net return for the typical forage rotation was \$192 per ha in the short-run under irrigation compared to a total of \$82 per ha under dryland.

In the SWDA portion of the sub-basin, net returns from irrigation were only \$192 in the short-run and reduced to \$132 per ha in the long-run. This reduction was partly on account of the high proportion of forages in the rotation, which, of course, is the primary purpose of irrigation in the area. The dryland net returns in this area of the sub-basin were slightly higher than those in the LDDA.

Daskatenewan	the second se	
Particulars	Irrigation (\$/ha)	Dryland (\$/ha)
	LDDA	
Short-run Net Returns (\$/ha)	\$669.81	\$67.05
Long-run Returns (\$/ha)	\$463.54	\$17.51
	SWDA	
Short-run Net Returns (\$/ha)	\$192.15	\$81.69
Long-run Returns (\$/ha)	\$132.40	\$61.99

Table 5.23. Weighted Net Returns for Various Sub-Regions of SSRB-Saskatchewan

Average Value of Irrigation Water per dam³, by Sub-Basins

In order to estimate the value per unit of water applied through irrigation in various subbasins of the SSRB, two sets of information were required: estimation of amount of water used for irrigation of various crops; and average value of water per ha of irrigated land.

With respect to the first set of information, data on irrigation water use by crops was not available. As a very poor substitute, water use of the sub-basin was estimated. These data were obtained in terms of diversion of water for various Alberta irrigation projects from Kulshreshtha, Sobool and Grant (2005). Converting these into per ha diversion for irrigation, and weighting them by area within a sub-basin, an estimate of water use for

irrigation in various sub-basins of Alberta was calculated. These estimates are shown in Table 5.25.

Table 5.24.Estimated Water Use forIrrigation in the SSRB			
Sub-Basin	Amount of Water in dam ³ /ha		
	Alberta		
Oldman	4.26		
Bow	5.72		
Red Deer	5.49		
SSRB (AB)	4.08		
Sas	katchewan		
LDDA	2.21		
SWDA	3.05		

The amount of water use for irrigation in the LDDA was also obtained from Kulshreshtha, Sobool and Grant (2005). This amount for the LDDA was estimated at 2.21 dam³ per ha, equivalent to 8.7 inches of water over the entire surface (Kulshreshtha, Sobool and Grant, 2005). The estimate for the SWDA from Kulshreshtha, Sobool and Grant (2005) was 2.15 dam³. However, data on various federal irrigation projects in the SWDA suggested a higher level of water used. This value was based on the average of seven irrigation projects and was estimated to be 7.44 dam³ per ha. However, after further consultations with the project managers in the Southwest Saskatchewan irrigation projects, it was suggested that a typical allocation in the region is about one-acre foot for a single irrigation. This translates into 3.05 dam³ of water. This estimate was used to estimate at 2.47 million dam³ per annum (Table 5.26). It should be noted that this estimate is slightly higher than that estimated by Armstrong, Pietroniro and Rolfe, and is based on several assumptions as listed above.

Sub-Basin	Water Use (dam ³)	
Oldman	917,991	
Bow	406,201	
Red Deer	657,645	
SSR (AB)	398,158	
LDDA	74,391	
SWDA	13,768	
SSRB TOTAL	2,468,154	

Table 5.25.	Irrigation Total Water Use
	in SSRB Sub-Basins

Source: Saskatchewan area data from SAFRR (2003); Alberta area data from AAFRD (2002) The average value was estimated using per ha difference in the net returns from irrigated and dryland production divided by the amount of water use. These estimates are shown in Table 5.27.

Table 5.26. AVP Calculation SSRB Sub-Basins, SSRB		
Sub-Basin	Short-run Value per Dam ³	Long-run Value per Dam ³
	Alberta	
Oldman	\$78.13	\$38.60
Bow	\$48.01	\$26.68
Red Deer	\$52.24	\$26.15
SSRB (AB)	\$72.64	\$30.41
	Saskatchewan	
LDDA	\$272.75	\$201.82
SWDA	\$36.22	\$23.09
SSRB (SK)	\$235.81	\$173.91

The average value of water in irrigation in Alberta was estimated to be \$48 to \$78 per dam³ in the short-run, and ranged from \$26 to \$39 per dam³ in the long-run. Given the positive value of water, every unit of water applied to irrigating crops produces a net gain in economic welfare of the Alberta society by these amounts. What cannot be determined at this point is whether it is the best use of water without a comparison with other users. In Saskatchewan, the value of water is higher in the LDDA compared to Alberta or the SWDA. This higher value could be attributed to the reported use of water for irrigation, which, as shown in Table 5.25, is almost half that reported for Alberta sub-basins. In the short-run, weighted average value in the Saskatchewan portion of the SSRB is estimated to be \$236 per dam³ in the short-run and \$174 per dam³ in the long-run.

Based on the results of this study, a lower value of water is also indicative of low water use efficiency in the SWDA. Since the region was assumed to have a larger proportion of flood (surface) irrigation system; furthermore, since much of these irrigated areas in this region are located on poor soils, productivity is lower and water use is higher. A case can be made to convert these projects to sprinkler irrigation and locate them on better quality of land.

5.8 Total Economic Value of Irrigation Water

The total value of water (\$) in each sub-basin was estimated in both the short and long run by multiplying the average value ((dam^3)) by the total amount of water use (dam^3). These estimates are shown in Table 5.28.

Total economic value of water used for irrigation within the SSRB was estimated to be \$175 million in the short-run, and almost \$91 million in the long-run. Thus, if this water

is not allocated for this purpose, the basin economy would lose this amount in additional gain in the society's well-being. Along with that, all forward and backward linkages would also be lost.

Sub-Basin	Total Irrigated Area in Ha	Total Water Use for Irrigation in dam ³	Short-run Value (Mill. \$)	Long-run Value (Mill. \$)
		Alberta		
Oldman	215,491	917,991	\$71.72	\$35.43
Bow	71,014	406,201	\$19.50	\$10.84
Red Deer	119,790	657,645	\$34.36	\$17.20
SSRB (AB)	97,588	398,157	\$28.92	\$12.11
		Saskatchewan		
LDDA	33,661	74,391	\$20.29	\$15.01
SWDA	4,514	13,768	\$0.50	\$0.32
Total SSRB	542,058	2,468,154	\$175.29	\$90.91

Table 5.27. Total Value of Irrigation Water in SSRB Sub-Basins

Chapter 6

VALUE FOR OTHER AGRICULTURE USES

Use of water in irrigation could produce two types of benefits: one, it increases the producer surplus (over that under dryland production systems); two, it could provide some benefits during a drought year. The first benefit is already discussed in Chapter Five. The second category of benefits from irrigation is discussed in this chapter. In addition to the irrigation water, there are two other types of uses of water on farms: livestock, and farm domestic water use. The chapter reviews these three types of values associated with agricultural water use.

6.1 Drought Mitigation

6.1.1 Concept of Benefit

Droughts can have direct as well as indirect impacts on the farm. The direct impacts will be through crop production, whereas indirect impact will be forthcoming through forward linkages of crop products with other activities on farms. Livestock production is one such activity that is linked to forage production. Total value of irrigation water in drought mitigation should be estimated as a sum of both of these benefits.

Crop Production Related Benefits

The hydrologist's definition of drought concerns a lengthy period of time with below mean monthly or annual streamflows (Dracup and Kendall, 1990). An agricultural drought is defined in terms of below mean monthly (or crop season) precipitation leading to lack of soil moisture available for crops. Under these conditions, crop growth suffers and all forward linkages of such production activities also suffer as well.

The conceptual benefit of using irrigation as a drought-proofing/drought mitigation on dryland farming can be illustrated with the aid of Figure 6.1 for crops. The figure plots crop yield against soil moisture availability for a dryland cropping system. The first crop production line from the horizontal axis represents crop production function under dryland farming with no irrigation. The crop production under a drought year would be limited by lack of moisture (denoted by the distance "A"). The second crop production line from the horizontal represents the raised crop production function as a result of applying irrigation during an average (non-drought) year, and the difference between the first and second functions is the marginal value of irrigation with respect to irrigation under an average year. The third line from the horizontal represents the crop production function under irrigation during a drought year (with growth-conducive temperatures that raises the crop yield represented by the distance "B"). The sum of the distances A and B is known as the benefit of irrigation for drought mitigation.

Figure 6.1. Drought Mitigation for Crop Production through Irrigation

Livestock Production Related Benefits

The livestock industry is sensitive to drought. Livestock production during a drought year is affected by a variety of factors; among these is the pastures' carrying capacity and forage availability. When these resources become a binding constraint, producers may sell a portion of their herd. In some extreme cases, producers may liquidate a part of the breeding herd that has implications for the income from livestock not only during the year of the drought but also during subsequent years (Kulshreshtha and Marleau, 2005).

Figure 6.2 shows that with the drought years beginning in year zero the cattle producers may take alternative measures of hauling water to maintain the existing herd for the short term (1-2 years). However, it does not take more than that before some downsizing of herd size would be seen. When the downsizing begins, the excess sale of cattle may make the accounting profit seem more favorable than should actually be reflected. This is because the cattle sold are a source of capital that would be a future source of revenue.

6.1.2 Methodology for Estimation

Crop Production

The drought mitigation benefit for crop production is composed of two parts: component 'A' which is the yield (and hence net return) for an average year above a drought year where no irrigation is provided, and component 'B' which is the yield (and hence net return) under a drought year relative to an average year where irrigation is provided. Drought period in this study is the average of 2001 and 2002 period.

Figure 6.2. Schematic of Value of Water in Drought Mitigation through Livestock Production

The difference 'A' (or yield difference for an average year over a drought year under dryland farming) was found by subtracting drought year yields (mean of 2001 and 2002) from non-drought year yields (mean of 1999 to 2000), where historic crop yields were borrowed from Wittrock (2005), Sobool, Kulshreshtha and Belcher (2004), Alberta Agriculture, Food and Rural Development (2003a) and Saskatchewan Agriculture and Food (2005). Next, the difference in crop yields represented by 'A' was converted to a difference in gross returns by multiplying it by the ten-year annualized crop prices from AAFRD (2003 a), Saskatchewan Agriculture and Agri-Food, and Rural Revitalization (2003) (See Table 6.1). With the assumption that all other input costs do not change between the two situations, the difference in gross returns were assumed to approximate the difference in net returns. The results suggested that in Alberta, these returns ranged from \$52/ha for potatoes to \$371 /ha for dry beans. The range for Saskatchewan was for the same crops but from \$26 to \$217/ha.

The difference 'B' in yields (the difference with drought conditions as opposed to an average year where irrigation is provided in both situations) was found by subtracting simulated crop yield (and net returns) under drought conditions relative to non-drought conditions where irrigation was provided under both. The simulation was performed using crop production functions of Heikkila et al. (2002) calibrated with evapotranspiration and precipitation data by Chinn (2005) representative of each sub-

basin. As with difference 'A', the assumption that all other inputs remain unchanged between the two scenarios was maintained except for the difference in incremental irrigation costs provided in the model by Heikkila et al. (2002). The economic part of the Heikkila model was calibrated with the same ten year annualized crop prices (1994-2003). Results for Alberta for this benefit are shown in Table 6. 2.

Table 6.1.	Crop Production and Net Return Differences 'A' (Difference in
	Average Year over Drought Year, Both under Dryland Farming);
	Saskatchewan and Alberta

Particulars	HRS Wheat	Barley	Canola	Dry Beans	Potato	Tame Hay	Alfalfa		
	-	Alberta							
Dryland Avg. Yield (Kg)	2,791	3,255	1,513	1,233	37,660	5,622	9,950		
Dryland Drought Year Yield (Kg)	1,782	2,313	1,121	549	37,346	3,793	6,714		
Yield Difference (Kg/Ha)	1,009	941	392	684	314	1,829	3,237		
Net Return Difference (\$/Ha)	\$168	\$112	\$135	\$371	\$52	\$144	\$308		
			Sa	skatchewar	1				
Dryland Avg. Year Yield (Kg)	2,186	2,650	1,429	1,247	33,223	3,262	4,958		
Dryland Drought Year Yield (Kg)	1,261	1,560	897	715	33,066	1,804	2,742		
Yield Difference (Kg/Ha)	925	1,089	532	532	157	1,458	2,216		
Net Return Difference (\$/Ha)	\$154	\$170	\$217	\$99	\$26	\$115	\$168		

Table 6.2.Marginal Change in Irrigated Crop Production in a Drought Year
(Difference 'B') for SSRB-Alberta

Particulars	HRS Wheat	Barley	Canola	Dry Beans	Potato	Tame Hay	Alfalfa
Irrigated drought year. yields (kg/ha)	4,200	6,173	3,190	2,666	37,731	4,439	14,459
Irrigated average year yields (kg/ha)	3,781	5,528	2,991	2,385	34,996	4,276	13,210
Yield difference (kg/ha)	418	645	199	282	2,735	163	1,249
Net return difference (\$/ha)	\$12	\$24	\$16	\$100	\$378	-\$59	\$36

Livestock Production

Impact of a drought on livestock production, as noted above, are more dynamic in nature. A drought can affect livestock enterprises in the drought year, and also may have some impact on the subsequent periods. Much of the impacts depend on the adaptation measure that livestock producers adopt in the wake of a forthcoming drought. Information of this aspect of livestock production is not well understood. However, a study by Marv Anderson and Associates (1980) suggested that producers undertake two types of adjustments on farms. One, reduce the input combinations and make adjustments in

cultural practices. Since Marv Anderson and Associates (1980) provide a minimum and maximum range of adjustments that could be made to input costs, this study used two estimates, a minimum and a maximum adjustment. Two, sell a part of the herd to reduce cost of transporting hay or purchasing it at higher prices. Both of these adjustments were used in the estimation of drought mitigation value of irrigation water. However, as discussed before, the sale of livestock has a favorable effect on net farm income during the drought year. However, during the subsequent period, producers must undertake herd building, which may have a reduction in net income for these periods.

6.1.3 Estimated Value of Irrigation Water for Drought Proofing

Crop Production

The benefit of irrigation in terms of difference 'A' (yield difference for an average year over a drought year under dryland farming and the subsequent net return difference) is shown for the crops in the Saskatchewan and Alberta portions of the SSRB in Table 6.1. This was added to the crop production, and the net return difference 'B' (the difference with a drought year over an average year where irrigation is provided in both situations) is shown for each of the sub-basins in Tables 6.2-6.6. It is noteworthy that although tame hay has a yield advantage under drought mitigation in both components 'A' and 'B', the net returns under component 'B' tend to be a small negative. This is because the irrigation requirements become increasingly more expensive for tame hay under drought condition.

Table 6.3.Crop Productions and Net Return Difference 'B' (Drought YearIrrigated Crop) for Red Deer River Sub-Basin

Particulars	HRS Wheat	Barley	Canola	Dry Beans	Potato	Tame Hay	Alfalfa
Irrigated drought yr. yields (kg/ha)	4,270	6,325	3,249	2,660	37,322	4,398	14,230
Irrigated average yr. yields (kg/ha)	3,673	5,382	2,936	2,252	34,057	4,243	12,876
Yield difference (kg/ha)	597	943	313	408	3,266	155	1,355
Net return difference (\$/ha)	\$36	\$54	\$49	\$158	\$469	-\$54	\$51

Table 6.4.	Crop	Production	and	Net	Return	Difference	'B'	(Drought	Year
	Irriga	ted Crop) for	r Old	man	River Su	b-Basin			

Particulars	HRS Wheat	Barley	Canola	Dry Beans	Potato	Tame Hay	Alfalfa
Irrigated drought yr. yields (kg/ha)	4,282	6,317	3,256	2,757	37,510	4,418	14,139
Irrigated average yr yields (kg/ha)	3,649	5,321	2,924	2,285	34,122	4,202	12,829
Yield difference (kg/ha)	633	996	332	472	3,388	216	1,310
Net return difference (\$/ha)	\$31	\$43	\$43	\$195	\$488	-\$44	\$61

Particulars	HRS Wheat	Barley	Canola	Dry Beans	Potato	Tame Hay	Alfalfa
Irrigated drought yr. yields (kg/ha)	4,193	6,218	3,209	2,796	37,561	4,400	14,139
Irrigated average yr yields (kg/ha)	3,719	5,447	2,959	2,301	34,430	4,253	13,081
Yield difference (kg/ha)	474	771	250	495	3,131	147	1,058
Net return difference (\$/ha)	\$25	\$41	\$36	\$209	\$455	-\$45	36

Table 6.5.Crop Production and Net Return Difference 'B' (Drought YearIrrigated Crop) for Bow River Sub-Basin

Table 6.6.Crop Production and Net Return Difference 'B' (Drought YearIrrigated Crop) for SSRB-Saskatchewan

Particulars	HRS wheat	Barley	Canola	Dry beans	Potato	Tame hay	Alfalfa
Irrigated drought yr. yields (kg/ha)	4,236	6,259	3,226	2,721	37,534	4,414	15,528
Irrigated average yr yields (kg/ha)	3,706	4,935	2,953	2,306	34,406	4,244	13,000
Yield difference (kg/ha)	531	1,323	274	414	3,128	170	2,529
Net return difference (\$/ha)	\$26	\$136	\$51	\$167	\$449	-\$53	\$97

6.2 Livestock Production

Value of water for drought mitigation was estimated using the data on adjustments made by livestock producers per Marv Anderson and Associates (1980). Although it would have been preferable to estimate the cost of selling herd during such periods, insufficient data did not permit such a valuation. Results are shown in Table 6.7.

Table 6.7.Change in Net Farm Income from Livestock Production under
Drought in All Sub-Basins of the SSRB in Alberta, 2004

Items of Cost	\$/ cow Wintered/yr	Minimum % Change	Cost / Cow under Minimum change	Maximum % Change	Cost / Cow under Maximum change
Winter feed	\$130	10%	\$143	80%	\$234
Pasture	\$201	20%	\$241	20%	\$241
Fuel	\$ 13	20%	\$16	20%	\$16
Operating interest paid	\$2	50%	\$3	100%	\$4
Other Variable Costs	\$130		\$130		\$130
Variable costs	\$476		\$533		\$625
Change in Variable costs during a drought year = Difference in return to equity due to drought			\$57		\$149

The difference in net farm income due to drought is the difference between the return to equity under average non-drought conditions less the return to equity under drought. Thus, the additional cost to producers could range from \$57 to \$149 during a drought period.

In order to estimate value per dam³ of water, one needs water use for forages grown under irrigated conditions plus water used for livestock consumption. The water use for irrigation was an average for the Saskatchewan and Alberta portions of the SSRB. Details are shown in Table 6.8. For Alberta, this estimate was 4.7 dam³ per ha, while for the Saskatchewan portion of the SSRB it was estimated to be 2.3 dam³. Given that a cow requires 16.58 m³ of water (based on Kulshreshtha, Sobool and Grant (2005)), the value of water per dam³ is estimated between \$96 and \$251 for Saskatchewan and between \$138 and \$361 for Alberta.

Particulars	Saskatchewan	Alberta
Total no. of Cattle and Calves on Irrigated Farms*	157,391.0	1,437,084.0
Total Irrigated Area	90,082.0	495,840.0
Cattle and Calves / ha Irrigated		1
Forage area (% of Total)	43.4%	24.3%
Total water use/ha	2.3	4.7
Total water use for forage (dam ³)	90,878.9	569,424.0
Water per cow-calf	0.0	0.0
Total Cow-calf water use (dam ³)	2,609.5	23,826.9
Total water use (Irrg+Cow-calf)	93,488.4	593,250.8
Increase cost in cow-calf Low limit	\$57.00	\$57.00
Total cost	\$8,971,287.00	\$81,913,788.00
Value per dam ³	\$95.96	\$138.08
Increase cost in cow-calf High limit	\$149.00	\$149.00
Total cost	\$23,451,259.00	\$214,125,516.00
Value per dam ³	\$250.85	\$360.94

 Table 6.8.
 Estimation of Value of Water for Livestock Production During a Drought Year

Source: * Statistics Canada, Special Tabulation, 2005

The above estimates are for a drought period. These need to be converted over a long-run perspective by taking into account drought frequency in the region. Based on the past yield records, it appears that during the last 50 years, there have been four major droughts -1961, 1988, 2001 and 2002 (Wheaton et al., 2005). Thus, the drought frequency is in the neighborhood of 8% over the period. Adjusting the values shown in Table 6.8 for this drought frequency results in a long-run value of water in irrigation for drought proofing in livestock operations. These values are shown in Table 6.9.

Particulars	Saskatchewan Sub-basin of SSRB	Alberta SSRB Sub-basins			
	Dollars per dam ³				
Low Cost of Adjustments	\$7.68	\$11.05			
Higher Cost of Adjustments	\$20.07	\$28.87			

Table 6.9.Long-Run Value of Irrigation Water through
Drought Mitigation for Livestock Operations

As shown in the table, benefits from irrigation in terms of mitigation of drought impacts could range between \$8 and \$20 in Saskatchewan, and between \$11 and \$29 per dam³ in Alberta. It should be noted that additional value of irrigation water in supporting the livestock industry is not included either in the estimates provided in Chapter Five or in the above table.

6.3 Value of Water in Livestock

The livestock industry is very important to Canada. In 2001, Western Canada made up more than 67% of the total beef cattle, dairy cattle, hog, poultry and other animals in Canada (Wittrock, 2005). Beef cattle in Western Canada made up over 84% of the total number in all of Canada for 2001 with 40% located in Alberta and 25% in Saskatchewan (Wittrock, 2005). Alberta is a major producer of livestock products, particularly cattle and calves and has a healthy and sizable meat processing industry in Western Canada. For the province as a whole, 63% of the total farm cash receipts are from livestock sources (Kulshreshtha and Marleau, 2005).

The value of water required for livestock would mainly include that which is needed for drinking and cleaning the livestock operation. Cattle are watered by means of surface water (such as impoundments or dugouts that retain water from the runoff and snow trapped through the fields) or groundwater by means of wells. Under normal (non-drought) conditions, around 85% of pastured livestock in the SSRB use surface water as their primary source (dugouts 60%, reservoirs 10%, and streams 15%) and the remaining 15% use groundwater sources⁹. According to Bell (2005), the trend of groundwater use for livestock production is slightly increasing over time.

6.3.1 Methodology

The value of water for livestock production can be estimated using several alternative methods. It can be assumed that if water is not there, the region would lose the entire

⁹ This is particularly true of the springs especially in the foothills and around Cypress Hills and deep wells with a shallow pipeline delivery system.

livestock industry. This would be a rather drastic assumption, since producers would make adaptation measures facing such a situation. Bruneau (2004) valued water for livestock as an input into livestock drinking and cleaning, with certain caveats discussed. He used the residual imputation method that calculates value added in the production of cattle attributable entirely to water as an input. He assumed that a decrease in water availability would result in a decreased stock (one-for-one), and like wise an increase in water would see the converse with no substitute nor increase in efficiency. Operators were assumed to have no alternate water source, hauling ability or capacity to divert water from another activity. This would overestimate the long-run cost of water. Value added assumes that other factors of production (labor, capital) would be idle if water resources were unavailable and would not transfer to another crop or livestock alternative. In reality this would not be true. These other factors would move to the next highest value added activity and hence there would not be as much a decline in value added.

The cost of such adaptation over and above the present cost of water supply to livestock operations might therefore be a preferred method. This alternative cost might be the cost of procuring water from other sources.

Under drought, the surface water sources, such as dugouts and reservoirs, according to Bell (2005) are typically replaced by wells (about 75% of the time) and by municipal water systems (about 10% of the time). New technologies like remote wells with solar powered pumps are also gaining popularity, but have not claimed a significant portion of the adaptation measures.

In the central part of the SSRB (eastern Alberta, Medicine Hat to Hanna regions) a 2,000m³ capacity dugout can be constructed for approximately \$2,500. However, this cost could multiply as much as three times depending on the location, being more expensive in the western regions of the SSRB (Bell, 2005). This study decided to use the lower value (\$2,500) for the SSRB Alberta and Saskatchewan sub-basins as well as the Red Deer River sub-basin, but twice the value (\$5,000) for the Oldman and Bow River sub-basins. Once constructed, dugouts are generally ignored for many years before any rehabilitation is considered (annual operating costs are minimal) (Bell, 2005). However, depreciation of 5% of capital cost for a one-time maintenance down the road was recommended (Bell, 2005).

This study assumed that reservoirs will be half the cost of a dugout for the respective subbasin but free of cost for watering livestock off a stream. The cost of constructing a well was estimated at \$6,215 by the Prairie Farm Rehabilitation Administration (PFRA, 2005). The operating and maintenance cost was assumed at 1.5% and the depreciation at 4% (hence, an annual cost of 5.5% would be assumed).

In this study, the value of water for livestock was calculated as follows:

- (1) Data on number of irrigation farms by type of livestock were obtained from Statistics Canada (2002). These included number of irrigated farms with cattle, swine, poultry and other farms. These are shown in Table 6.10.
- (2) By multiplying the number of each type of farms (cattle, poultry, swine and other) described above with the proportion of dugouts, reservoirs, streams and wells provided by Bell (2005), and, shown above, an approximate of number of dugouts and reservoirs was made for each of these sources of water for the respective farms. Under the assumption that each type of farm will have the same proportion of the water sources and the proportions of these water sources apply uniformly across the SSRB, these numbers were estimated and are shown in Table 6.11.

in the Alberta CARZ Regio		
Туре	Number	
Cattle farms	4,440	
Pig farms	230	
Sheep farms	472	
Poultry farms	722	
Horse farms	3,391	
Other farms	532	
Total	7,122	

Table 6.10.	Number of Farms by Farm Type
	in the Alberta CAR2 Region

* Numbers may not add to the total since some farms would have more than one type of livestock

Source: Statistics Canada (2002)

able 6.11. Number	of	Farms	with	Source	of	Water
-------------------	----	-------	------	--------	----	-------

Farm Type	Dugouts	Dugouts Reservoir		Groundwater	
Proportion of Farms by Source of Water	60%	10%	15%	15%	
No. of farms	4,273	712	1,068	1,069	

Source: Using proportions provided by Bell (2005) and number of farms by Statistics Canada (2002)

(3) By multiplying the cost of each source (again provided by Bell, 2005) by the number of the individual sources of water for each individual type of farm, the cost of water for each type of farm was computed. These costs are shown in Table 6.12. This again assumes that the proportion of water sources is uniformly distributed across the SSRB, that the cost of each water source is the same across the SSRB, and that all the farms in this CAR are unique (i.e., each farm is either cattle or poultry or hog but not a combination of two or more at the same time.)

6.3.2 Estimated Value

Alberta

The present cost of water provision to various types of livestock farms was estimated using the above methodology. Results are shown in Table 6.13. The value of water in livestock operations was a difference between present cost of water and cost under the condition that surface water does not exist and has to be obtained from groundwater sources. This value for Alberta was estimated at \$911,786 per annum.

Table 6.12.	Annual Operational and Depreciation Charge by Source of
	Farm Water

Source of Farm Water	Annual Operation and Depreciation Costs (Dollars)		
Dugout	\$250.00		
Reservoir	\$125.00		
Stream	0		
Groundwater Well	\$341.82		

Source: Bell (2005); PFRA (2005)

Type of		Total value							
Farms	Dugout	Reservoir	Stream	Groundwater	of water				
	Present Source of Water								
All farms	\$1,068,250	\$89,000	0	\$365,406	\$1,522,656				
	Source of Water under no surface water								
Proportion	0	0	0	100%	1				
Cost	0	0	0	\$2,434,442	\$2,434,442				
Total Value of Water					\$911,786				

Table 6.13. Estimated Value of Water in Livestock for Alberta CAR2

Saskatchewan

The methodology used for Alberta was repeated for Saskatchewan. The Saskatchewan portion of the SSRB was represented by CAR 3BN and 6B. Number of farms in the subbasin is shown in Table 6.14, and the cost of obtaining water in Table 6.15. Total value of water for livestock operations in Saskatchewan portion of the SSRB was estimated at \$775,128 per annum. To estimate the value of water per dam³, the total value of water in the Alberta and Saskatchewan portions of the SSRB was divided by the total water withdrawn in the livestock sector from Figure 3.2 (84,000 dam³). The value was estimated to be \$9.22/dam³.

Туре	Number		
Cattle farms	2,659		
Pig farms	197		
Sheep farms	228		
Poultry farms	448		
Horse farms	866		
Other farms	329		
Total Number of Farms	6,054		

Table 6.14.Number of Farms by Farm Type in the
Saskatchewan CAR3 BN and 6B Region

Source: Statistics Canada (2002)

Table 6.15.	Estimated Value of Water in Livestock for Saskatchewan CAR3 BN
	and 6B Region

D		Value of				
Particulars	Dugout	Reservoir	Stream	Groundwater	Water	
Proportion of Livestock Water from Source	60%	10%	15%	15%	100%	
All farms	908,100	75,765	0	310,407	1,,294250	
Proportion of farms with source of water under surface water shortage	0	0	0	100%		
All farms with cost of water	0	0	0	2,069,378	2,069,378	
Value of water for livestock					775,128	
Value per dam ³ for SSRB					9.22	

The method of estimation used average values of costs for water delivery mechanisms whereas actual costs depended on the sizing of the mechanism to the number of animals within the farm. As well, the sizing depended on whether the farm is in the drier, eastern part of the basin or in the wetter, western part.

6.4 Farm Domestic Water Use

Farmers and other rural water users, unlike their urban counterparts are directly responsible for their water supply (Agriculture and Agri-Food Canada, 2000). Developing a dependable source of water usually involves considerable costs, ranging from \$5,000 to \$25,000 (Agriculture and Agri-Food Canada, 2000). Rural residents must also pay for in-home treatment systems and ongoing operation and maintenance costs. Their source of water may include one or a combination of the following (Agriculture and Agri-Food Canada, 2000):

- A shallow or deep groundwater well
- A lake, stream, river, or on-farm storage pond or dugout
- A cistern filled by rainwater or by hauling water from a distant source
- A regional water supply pipeline

Different sources may be used for different purposes such as drinking, cooking, watering lawn and garden etc. Development of many rural water pipelines during the 1980s and 1990s provided a reliable and high-quality supply of water to many people living in the prairies (Agriculture and Agri-Food Canada, 2000). Although pipelines have been owned and operated by local associations, they have been technically and financially assisted by Agriculture and Agri-Food Canada (Prairie Farm Rehabilitation Administration). Pipelines benefit rural communities in reducing the number of times residents had to haul water long distances and store it (Agriculture and Agri-Food Canada, 2000).

Canadians are highest next only to Americans in average daily household water use per person at 258 to 445 L (Agriculture and Agri-Food Canada, 2000). The lower figure is based on household that paid for water on a volume basis, and the higher figure for those who paid a flat fee, regardless of volume used (Agriculture and Agri-Food Canada, 2000). Very little evidence was found on domestic use in rural areas and how it compares with this average. This in part is because there are no provincial requirements for licensing domestic on-farm water use, and domestic water used by rural residents is rarely metered. An exception to this occurs in the Prairies where recently constructed pipelines are metered. Meters on individual connections to pipelines in southeast Saskatchewan show that average daily water use per person, assuming little water is used for outdoor purposes, ranges from 225 to 373 L with higher consumption in households with babies and young children. In comparison, metered water use in southern Alberta, for a family of five with a private water supply and treatment system was 155L, per person per day, assuming little outdoor use (Agriculture and Agri-Food Canada, 2000).

Within the SSRB, as with urban water use, the Bow River and South Saskatchewan River sub-basins account for the major part of rural water use, at about 91% of total rural water use. Water use for rural communities within the South Saskatchewan sub-basin is about 600 dam³ more than for communities in the Red Deer River sub-basin. Rural water use in the Bow and Oldman sub-basins are 242 dam³ and 202 dam³ respectively (industrial water use has been separated from the community water use information) (Armstrong, Pietroniro and Rolfe, 2004).

No study was found on the value of water to the farm household for domestic use. A study of cost of water from pipelines vs. conventional groundwater sources may shed some light on this issue.
Chapter 7

VALUE OF WATER FOR SELECTED NON-AGRICULTURAL WITHDRAWAL USES

As shown in Chapter Three, although agriculture is the single largest use of water in the SSRB, a number of other uses of water also exist. These uses include industrial and domestic (or residential), and that for power generation. The former uses are sometimes combined into a single source use called municipal water use. These uses and the related value of water are described in this chapter. Much of the discussion is based on a review of studies.

7.1 Thermal Power Generation

7.1.1 Introduction

This section looks at the value of water used in power generation. It looks at two types of power generation: thermal and hydroelectric power generation. The first one is described in this section, while the second one in the next chapter.

7.1.2 Value of Water in Thermal Power

On account of time and data limitations, this value of water was based on a review of existing studies. Unfortunately few studies have reported value of water in thermal electric power generation. One of the Canadian studies was that by Kulshreshtha et al. (1988). This study suggested that thermal power cooling water be valuated using the alternative cost approach. The alternative production technology used is the long run recirculation of water. The cost of this alternative would involve the construction and operation of a cooling tower in addition to existing thermal facilities. Value is determined by comparing the difference in construction and operating costs of two thermal plants, one of which has the facilities to re-circulate the water. The quantity of water associated with the difference in cost is the difference in water intake between the two plants (Kulshreshtha et al., 1988). However, on account of lack of data, this value was not estimated.

Muller (1985) applied an average willingness-to-pay (WTP) of \$8.784 per dam³ to estimate the value of water for recirculation in thermal electric plants. This value was based on the Young and Gray (1972) estimate of value of C\$10.83 per acre-foot in USA, converted into a per dam³ value for the Canadian estimate. Translating this value to reflect 2004 dollars would result in a value of water of \$9.66 per dam³.

Another US study that estimated the value of water in thermal electric power generation is that reported by Frederick, Vandenberg and Hanson (1996). Value of water in this study was based a review of studies in the US. A mean value of US\$34 per acre-foot of water was reported. The median value was slightly lower at \$29 per acre-foot. Converting these into Canadian dollar value for 2004 (under the assumption of a 16% and an exchange rate of 1.25 Canadian to one US dollar), would make the range of this value of water between C\$51.84 and C\$60.78 per dam³. Comparability of these estimates with the other studies is somewhat suspect since the method of estimation of these values is not clear for the Frederick, Vandenberg and Hanson (1996) study.

7.2 Value of Water for Municipal Uses

7.2.1 Introduction

For descriptive purposes, municipal water use can contain various types of water uses. Gibbons (1986) categorized these into residential, public and "other". A study for Newfoundland by A.D.I. Nolan Davis and Gardner Pinfold Consulting Economists Ltd. (referred to as A-G Study, 1996) categorized this water use into industrial, commercial, residential and other water uses. In some instances water use is recorded at a community level, which according to Sobool and Kulshreshtha (2003) includes residential, industrial and commercial, and public water uses. In other studies, no distinction is made to the type of use in a municipality, and a single value of water is estimated. This makes a comparison of estimates from different studies somewhat difficult.

7.2.2 Review of Literature

Most of the studies on municipal water use have focused on the estimation of a demand function. The resulting demand elasticities are then used to estimate value of consumer surplus, which if divided by the quantity of water used is equated to the value of water or net WTP of water. A compilation of early demand elasticities for municipal water have been documented by time and cross-section (Gibbons, 1986). Elasticities differ if water is used indoors (for drinking, cooking etc.,) or outside for sprinklers; they differ by seasons (summer and winter are largely different), by socio-economic profile, by weather patterns, and by residential, commercial and industrial shares of use. It was also mentioned that demand curves may shift over time. With increasing levels of income, the price paid for water may become less significant, and a shift in the mix of users to those who are less responsive to price.

An empirical valuation of municipal water for three North American municipalities (Toronto, Ont.; Raleigh, N.C.; and Tucson, Ariz.) was undertaken by Gibbons (1986) using the deriving market demand approach. In each of the three municipalities, the calculations were done for four different absolute reductions in consumption from average household consumption in summer or winter. The reductions were $\frac{1}{4}$, $\frac{1}{2}$, 1 and 2 ccf (1ccf=100 cubic feet) per household per month. The final column in Table 7.1 gives the value of water at a 10 percent reduction. The prices in each locality were converted to

1980 dollars. Average value of water in 2004 Canadian dollars for Toronto would then be \$39.30 per dam³ for the summer time¹⁰ and \$57.80 per dam³ for the winter time.

Study by Kulshreshtha et al. (1988) for Saskatchewan used the demand function approach with block rate pricing. Value of water was estimated for various communities and ranged from \$5 to \$3,356 per dam³. Converting these to 2004 values will translate into a municipal water use value between \$6.7 and \$4,497 per dam³.

Locality & date				Avg. cons.	N	Marginal water values (1980 S/ac-ft)			
	Season	Price (1980 Elasticity \$/ccf)	Elasticity	(ccf / house / mo.)	Reductions from avg. monthly cons. (ccf)			10% reduction	
					1/4	1/2	1	2	
Toronto,	Winter	0.79	-0.75	5.30	11	23	51	124	25
Ont. 1967	Summer	0.79	-1.07	6.55	6	13	27		17
Tucson,	Winter	0.72	-0.23	9.44	19	40	89	225	82
Ariz. 1979	Summer	0.83	-0.70	16.43	4	8	17	35	28
Raleigh,	Winter	1.27	-0.305	7.82	30	64	142	358	105
N.C. 1973	Summer	1.23	-1.380	8.81	6	11	24	-	21

Table 7.1. Marginal Values for Residential Water Demand, Selected Periods

Muller (1985) reported a value of water for municipal uses in Canada. The range of values was from a low of \$100 per dam³ to a high of \$2,430 per dam³. A disaggregated approach to estimation of value of municipal water was undertaken by the A-G (1996) study. In this study water use was identified by purpose and value was estimated for each of these uses in Newfoundland. The willingness to pay (WTP) for residential water, for example, was obtained by approximating consumer surplus (CS). Once the CS is estimated, the value of water is calculated by adding the actual consumer expenditure on water to the consumer surplus. The consumer surplus was estimated using the following formula:

$$CS = P_0 Q_0 \{ (P_a / P_0)^{n+1} - 1 \} / (n+1)$$
(7.1)

Where,

 P_0 = the original price of water (\$/m³) P_a = the new price of water, or maximum price paid (\$/m³) Q_0 = the original quantity of water consumed (10⁶m³/year) n = price elasticity of demand for water in the region

Results are shown in Table 7.2. Value of water was the highest for industrial use and lowest for residential and other water uses.

10

Assuming an inflation rate of 50% and the value of Canadian dollar at 1.25 per US dollar.

Newfoundland					
Type of Use of Municipal Water	Value per dam ³ in 1994	Estimated Value per dam ³ for 2004*			
Residential	\$510	\$561			
Industrial	\$560	\$616			
Commercial	\$580	\$638			
Other	\$510	\$561			

Table 7.2. Estimated Value of Water for Municipal Uses, by Type of Use.

* Assuming an inflation rate of 10% over the 1994 to 2004 period. Source: ADI Nolan Davis and Gardner Pinfold (1996)

7.3 Value of Water for Industrial Purposes

Industrial processes require water for several distinct purposes: one, for cooling and condensation; two, for manufacturing and refining processes; three, for washing raw materials and equipment; four, as a method of conveying production inputs; and five, as an incorporated ingredient in the final product (e.g., beverage industry). The latter is called "process" water use (Gibbons, 1986). Each industrial water use may have different quality requirements. For example, the food and beverage industry would have the highest quality requirement while a cooling plant may not. Moreover, industrial water uses invariably result in some water quality degradation.

Trends in manufacturing water use (Environment Canada, 2004) showed that total national water intake has declined since 1981 and that water intake relative to output has declined within the last two decades (mostly a function of environmental regulations, technological improvements, and change in other input prices). Manufacturing water sources have continued to be largely from surface water (82% and roughly unchanged since 1991). The functions of water have been for processing water (49%) and for cooling (47%). The reuse rates were modestly up since 1991 and waste water discharge is down from 1991. Manufacturing water consumption (water that is not returned to its original source) was 7% in 1991 and 9% in 1996.

Industrial water demand is a derived demand of other variables such as population levels, industrial output, water allocation regulations (including water pricing), and technological conditions. In addition, the use of newer technologies can lead to decreased water intake and increased water recirculation.

The three valuation methods suggested by Environment Canada and Statistics Canada study (2002) include (1) a derived market demand curve approach, (2) rent valuation/return to factor approach, and (3) alternative cost approach. In the economics of industrial water use, water costs are a small fraction of total costs and industrial demand for water is mostly inelastic (De Rooy, 1974: Stone and Whittington, 1983: Brebenstein

and Field, 1979 and Gibbons, 1986). Theoretically, demand and value of water in industrial use could be derived statistically, but as a practical matter this appears to be a vain hope and residual imputation is unreliable when water costs are a miniscule element of total costs (Gibbons, 1986). Kulshreshtha et al. (1988) suggest that the value for water in industrial purposes be calculated as willingness to pay using a demand function. The water demand curve can be estimated from industry survey information. The demand of water intake is the relationship between the cost of water to the firm and the amount of output.

In light of these limitations, value has been equated with the internal cost of water recirculation. In other words, the producer should be willing to pay only for what it would cost to produce water of adequate quality through treatment and reuse (Gibbons, 1986). However, unlike Gibbons' method of equating the shadow price of water only with the cost of reusing or recycling water, Bruneau (2004) calculated the water value for industries in the SSRB by equating the shadow value with the cost of water intake and treatment; that is, with the cost of reusing and recycling as well as with the cost of wastewater disposal and treatment.

Renzetti (1986) has estimated value of industrial water use for British Columbia using a demand function approach. His estimates for the year 1981 are shown in Table 7.3. In 2004 prices, these values can range from a low of \$1.4 for primary metal industries to a high of \$71.4 for the food and beverage industries.

British Columbia, 1981					
Industry	1981 Level of Value per dam ³	2004 Projected* Value per dam ³			
Paper manufacturing	\$2.0	\$3.0			
Chemical Industries	\$34.0	\$51.0			
Primary Metal	\$0.9	\$1.4			
Metal Fabricating	\$23.0	\$34.5			
Non-Metallic Mineral products	\$31.0	\$46.5			
Petroleum refining	\$17.0	\$25.5			
Food and Beverage	\$47.6	\$71.4			
Wood industries	\$16.4	\$24.6			
Transportation equipment	\$4.0	\$6.0			

Table 7.3.	Estimated Value of Industrial Water Use in
	British Columbia, 1981

* Using an inflation rate of 150% during the 1981 to 2004 period. Source: Renzetti (1986)

Muller (1985) reported value of water in industrial water use based on US estimates provided by Young and Gray (1972). He estimated these values for the year 1984 as follows: food and beverage: \$123.65 per dam³; paper and allied products industries: \$86.74 per dam³; chemical industries: \$75.92 per dam³; primary metal industries: \$29.82 per dam³; and petroleum products and refineries: \$18.55 per dam³.

Frederick, VandenBerg and Hanson (1996) also reported a value of industrial water use based on a review of literature. Mean value in US dollars was \$282 per acre-feet, while the median value was reported to be \$132 per acre-feet. If converted to 2004 value in Canadian dollars, the mean value will be C\$504 per dam³ and the median value of C\$236 per dam³.

7.4 Value of Water for Mining

Mining in Alberta and Saskatchewan is a vital part of each province's economy. In the course of mining for minerals, oil, metals, or other non-metal resources, water is needed for many purposes. This includes processing, sanitation, cooling, and condensing. Mining can be characterized as a non-municipal industry as most mines or oil drills are located outside of urban municipal areas.

Literature on the valuation of water in the mining industry is limited. The only study for the SSRB that was found was that by Kulshreshtha et al. (1988), which pertained to the valuation of water in potash mining in Saskatchewan. The study suggested two methods that could be applied: direct approach and the alternative cost approach. Of these two approaches, the latter approach was deemed to be the most practicable.

The direct approach assumes that the value of water in potash mining is equal to the cost of acquiring the water for use in the mine. To use this method, one must first calculate how much water is used for the mining and processing of potash. Kulshreshtha et al. (1988) determined how much water (in dam³) was needed to mine 1,000 tonnes of potash. The nest step in the direct approach is to then figure out the cost of the water system. The water system includes equipment for water intake into the mine, as well as machinery to treat the water for processing needs. Once the total annual costs of operating the water system are calculated, the dollar value can be converted into a unit (\$/dam³) cost. From these two calculations, a value for water (\$/dam³) can be estimated. This value provides a lower limit to the real value of water. This is because an assumption is made that "if the potash mines are willing to spend this money, it must be at least worth that much to them". In fact, it is conceivable that the benefits from that water use may be higher than that.

The alternative cost method compares the costs of production at normal water input with the least cost alternative means of production that generates the same output, but with lower water input. The difference in costs is associated with the value placed on water. When choosing the least cost alternative, it is important to note that for the long run, one must consider all costs of production while in the short run, only short run costs need to be regarded (Kulshreshtha et al., 1988).

The two methods of production to be compared in potash mining are conventional mining and brine processing. Mining involves the removal of ore from the surface using conventional methods. Water is then needed in the milling process to remove the potash from the ore. Brine processing involves water being forced into potash beds where it becomes saturated with potash. The brine solution is then brought to the surface for milling where the product is removed. The effluent left over from the milling process in the brine method is not able to be released into the environment, so it is considered to be entirely consumed. The cost of mining for potash using the brine method (which uses more water) is compared with the least cost alternative, conventional mining (which uses less water). The difference in costs between the two methods is regarded as the value of water in potash mining.

In the province of Saskatchewan, the value of water in mining was estimated to be \$240.00/dam³ in 1986 dollars (Kulshreshtha et al., 1988). Using the Consumer Price Index, this value works out to be \$347.47/dam³ in 2004.

In Newfoundland, A-G (1996) study estimated value of water in mining using demand function elasticities obtained from Tate, Renzetti and Shaw (1992). The study estimated this value in Newfoundland to be \$7.64 million (in 1994 dollars). Given a water use of 557 Mm³ (equivalent to 555,000 dam³), this represents a value of \$13.72 per dam³ in 1994 dollars and projected to be \$15.91 per dam³ in 2004 dollars.

Chapter 8

VALUE OF WATER FOR IN-SITU USES

In-situ water use refers to that part of the water that is removed from the source or, if removed, is available in its entirety to other users downstream. One of the major in-situ water uses is that for in-stream needs. This is to support various ecosystem functions related to rivers and lakes. It is a very important environmental aspect of water management and needs to be included in any water management decision. Unfortunately much of the information needed to undertake this valuation is missing, particularly regarding the minimum needs of stream flow to maintain a healthy ecosystem. For this reason, this value of in-situ water use is not estimated in this study.

Other major in-situ water uses include those for navigation, for waste assimilation, for recreation and for hydroelectric power generation. Of these uses, navigational water use is not a major use in the SSRB. With the exception of some ferries across the river at various points in the basin, the river system is not used for navigational purposes. For this reason this use is also excluded.

In this chapter, the three remaining in-situ water uses are values using secondary data. These include: hydroelectric power generation, recreational activities, and waste assimilation.

8.1 Value of Water in Hydroelectric Power Generation

8.1.1 Introduction

Hydropower generation uses water but does not consume water. Hydroelectricity is generated as water turns a hydraulic turbine which rotates the generator producing electricity. Once water has been through the turbine, it leaves the system and is returned to the river it came from but in a downstream location. The electricity load generated by hydropower for a given river depends on the number of feet of average net head on the river, and on the technology of the hydropower facilities (efficiency of converting kinetic energy of falling water to electrical energy) (Gibbons, 1986). Moreover, since each unit of water dropped over a given head makes the same amount of electricity, the physical productivity of falling water is constant; hence, the marginal and average productivities of water are the same (Gibbons, 1986).

The complicated issues of valuing water are not in identifying the physical productivity, but in assigning a dollar value per kilowatt-hour (kWh) produced by hydropower. In an unregulated market place, the commodity price which balances supply and demand at equilibrium represents the value of the commodity. However, the electric utility industry is price regulated. This makes the most practical means of deriving a marginal value of water the alternate cost of electricity generating electricity by another means (Gibbons,

1986; Kulshreshtha et al., 1988). The following sub-section describes the methods of valuing water in hydropower generation.

8.1.2 Conceptual Methodology of Valuation

The method of alternative cost of water is typically used to estimate the value of water for hydroelectric power generation. The alternatives sought in this context are the other means of generating the same amount of electricity. The simple assumption is that of substitutability; that is, electricity generated from one source is totally substitutable by that from another source. The alternative cost of valuing water would depend on how long the replacement is needed (short-run or long-run), and also on whether it replaces the base load or peak use of water. The methodology would, hence, encompass three values for water: the short-run marginal value, the long-run replacement capacity value and the long run average value and consider if the replacement is for base load or peak.

Short-run Marginal Value

In the short-run, all fixed costs and capital outlays are considered unchanged. The costs that are considered to change in the short-term are fuel, operating and maintenance costs. The alternative value of lost kWh worth of water would be electricity generated through gas turbine or coal. In general, hydropower is used for peak demands though some is used for base load as well (Bruneau, 2004). While coal is used during base load, gas is used during the peak. Hence, the short-run marginal replacement cost value would depend on weather the replacement was during the peak (gas) or base load (coal) period.

Long-run Replacement Capacity Value

If water is reduced from a given river *ad infinitum*, thus necessitating an increase in alternate electricity generating capacity for the region, the long-run value of water is used. This is calculated as the cost of new alternate electric capacity less the production costs of hydropower forgone (Gibbons, 1986). A caveat expressed by Gibbons is that it ignores consumer price demand elasticity in that, if the electricity prices rises as a result of new-capacity construction and rising fuel costs, the growth of electricity demand slows. As with the short-run marginal value, this value would also depend on what proportion of new capacity would be used for base load and what proportion is used for peak demand.

Long-run Average Value

This is the total cost of alternate electricity generation capacity (capital plus production) less total cost of hydropower (Gibbons, 1986). Again, it would be necessary to know what proportions are base load and peak.

8.1.3 Estimated Value of Water in Hydroelectric Power

Very few studies have attempted to estimate value of water in hydroelectric power generation for the SSRB. Two studies that have reported such values for the basin include Bruneau (2004) and Kulshsreshtha et al. (1988). Other relevant studies for Canada include that be A-G (1996) study and Muller (1985). Such values have also been reported for the USA by Frederick, Vandenberg and Hanson (1996). These are reported here first by location, and then by year of study.

Kulshreshtha et al. (1988) applied the method of alternative cost to measure the value of water in hydroelectric power generation. Results suggested a value between \$7 and 18 per dam³, which in 2004 dollars would be equivalent to \$8 to \$21 per dam³.

Bruneau (2004) reported a value of water in hydroelectric power generation between \$0.11 and \$0.24 per dam³.

Muller (1985) did not report a value of water in hydroelectric power generation in terms of per unit of water used, but on the basis of per kWH of electricity generated. Total value for Canada in 1980 was estimated to be between \$4.2 and \$6.6 billion, which, if translated in terms of per kWH, amounts to 1.6 to 2.49 cents in 1980 dollars.

The A-G study (1996) also reported a value of water in hydroelectric power generation but combined it with thermal power generation. In addition, the method was based on the residual imputation method, where all costs were deducted from the value-added. The total value of power generation for Newfoundland was reported to be \$45 million. This value, on account of the method used is not comparable to any of the other studies.

In the USA, Frederick, Vandenberg and Hanson (1996) reviewed various studies related to value of water in hydroelectric power generation. The method of estimation used in these studies was not clear¹¹. The mean value of water in 1995 dollars was \$34 per acrefeet and the median value was \$29 per acrefeet. Converting these values into Canadian 2004 dollars would result in an estimate of C\$60.29 per dam³ at the mean, and C\$51.42 per dam³ at the median.

8.2 Value of Water for Recreational Uses

8.2.1 Introduction

Nature based activities, including recreational water use, have an important place in the lives of Canadians. This is due to the ecological services provided by these ecosystems and the benefits to the lives of Canadians who participate in outdoor recreation. In the South Saskatchewan River Basin, there are a number of parks and recreational areas

¹¹ This is not to suggest that this method could not be deciphered from a review of original studies. However, time and resource constraints did not permit this activity.

providing access to water for recreational use. In Alberta and Saskatchewan, visitors to parks and recreational areas spent \$901.7 Million (CAD) and \$263.7 Million (CAD) respectively on nature related activities in 1996 (Statistics Canada, 2000). The willingness of people to spend this amount of money on nature based recreational activities represents a value of these natural areas for recreational use. However, determining the value of water in these recreational activities is more difficult. With no real directly observable market for nature based recreation, one must rely on other methods of determining the economic value of these activities (O'Grady, Brockman and Kulshrestha, 1987). These methods must be thorough in order to prevent inaccurate information being used in policy development. Otherwise there will be an inefficient use of nature to meet recreational demand.

This section looks at the value of water for use in recreation, and how much people in the South Saskatchewan River Basin (SSRB) use water for recreational purposes. There is an economic value of water since the water must be allocated away form other potential uses¹². This would present an opportunity cost of the water used in recreation since it may not be available for diversion direct consumption¹³ or as an input for in-stream ecological services. The water used for recreation may still be used as an input for other uses as long as the quality of the water is still high enough to support other potential uses. Generally speaking, water used for recreation is typically a part of a stream, river, or lake where the flow or stock of water will be unaffected by recreational use.

The question is: is this price economically efficient? To begin to address the question – "what is the economic value of this water allocated for recreation?": this section will review the level of participation in water recreation by people who visit provincial parks in the SSRB, surveys that are intended to show the preferences for different types of activities with respect to water recreation, and estimates of economic value of water for recreation.

8.2.2 Water Recreation in the South Saskatchewan River Basin

The SSRB contains provincial parks and recreation areas within Alberta and Saskatchewan, the most of which lie in Alberta. This is due to larger numbers of sub-basins containing rivers, and a higher population in Alberta¹⁴. Swimming, boating, and

¹² However, the amount explicitly allocated for recreation by governments is usually quite small due to recreation, and non-use in-stream services have low priority over other uses.

¹³ These uses include: domestic, municipal, industrial (both input and output waste), agricultural, and irrigation.

¹⁴ It is assumed that there will be an investment in parks and water recreation based on population. The higher the population, the more parks will be present. As well, more adjoining rivers, streams and tributaries are in Alberta.

fishing are the direct uses of water for recreation in these parks and enjoying the picturesque view of the water is an indirect use of the water for recreation¹⁵.

Parks in Alberta

There are 15 provincial parks and 26 recreational areas in Alberta that lay within the SSRB (Alberta Community Development, 2004)¹⁶. More details on these are provided in Appendix C. These parks and recreational areas offer a variety of services

to facilitate water recreational use, namely beaches (swimming), boat launches (boating, waterskiing, and fishing), and trails (non-use enjoyment) (Alberta Community Development, 2004).

There were a total of 8.2 million visitors to the parks and recreational areas of Alberta (Alberta Community Development, 2004)¹⁷. The large majority of these visitors to parks, as shown in Figure 8.1, were day users¹⁸ followed by campers, group campers¹⁹, and those staying in hotels and cabins²⁰ (Alberta Community Development, 2004). The parks that were closer to larger urban areas tended to have higher numbers of visitors than parks further away due to the reduced travel cost.

¹⁵ For example, activities such as walking, biking, hiking, etc. are included here.

¹⁸ These visitors include those who travel to the park and back home again in the same day.

¹⁹ These are people who camp in larger groups sometimes taking up several campsites.

²⁰ These are referred to as "fixed roof" accommodations (Alberta Community Development, 2004).

¹⁶ Based on a visual count of recreational sites and provincial parks.

¹⁷ This is for ALL parks and recreation areas, not just the ones in the SSRB. Data for the SSRB parks was not found.

This high level of day use requires that parks be close to urban areas in order to ensure that visiting for the day is a feasible venture. Many parks in the Alberta portion of the SSRB lie within an hour's drive of Calgary, Red Deer, or Lethbridge. This creates opportunity for visitors to make day trips and to avoid the extra cost of overnight stays and long travel times. In 1996, Albertans spent \$901.7 Million (CAD) on nature based activities²¹. This includes all expenses relating to recreational water use like travel, accommodation, fees, etc.

Parks in Saskatchewan

There are about 22 parks and recreational areas along the Saskatchewan portion of the SSRB²². The Diefenbaker Lake consists of the largest water storage along the SSRB and has three parks associated with it alone. These parks provide access to water sources for recreational purposes as in Alberta.

Saskatchewan, as shown in Figure 8.2, had a total of 2,124,333 people visiting provincial parks during 2004 season (Saskatchewan Environment, 2004). Generally the number of visitors is between 2 million to 2.5 million (Saskatchewan Environment, 2004). More details on these trends can be found in Appendix C.

Figure 8.2. Saskatchewan Provincial Parks Recorded Visits, 1994 to 2002

²¹ Data on expenditures by Albertans for years after 1996 were not available or accessible for use in this report.

²² Based on 37 provincial parks in Alberta and Saskatchewan in the SSRB (O'Grady et al., 1986), with 15 being in Alberta. The remaining 22 were then classed as those within the Saskatchewan portion of the SSRB.

Visitors to Saskatchewan's parks spent a total of \$129 Million (CAD) in 2003 (Derek Murray Consulting Associates, 2004). This generated an increase of \$64.16 million to Saskatchewan's economy as a result of participation in park based activity (Derek Murray Consulting Associates, 2004). Like Alberta, this includes all aspects of travel, accommodation, and equipment.

8.2.3 Participation in Water-Based Recreational Activities

In 2003, a survey was conducted by the Community-University Institute for Social Research (CUISR) to understand better how people felt about the water resource management of the Saskatchewan River Basin. In this survey, people were asked about their water recreation activities and preferences. Although specific data on the SSRB were not collected, these do represent a good picture of the SSRB activities. Table 8.1 summarizes the results. The indirect uses of water for recreation were the most popular with swimming as the most popular direct recreational use of water (Ofosuhene, 2003). Surveys such as these provide an idea of what people value the most about their water recreational activities and of what most are willing to pay for the activities.

	Alberta	(n=116)	Saskatchewan (n=76)		
Type of Activity	Average # of Times	Percent Involved	Average # of Times	Percent Involved	
Walking/Cycling on Shore of River/Lake	45	81%	35	78%	
Camping/Cottage by Lake/ River	11	65%	14	62%	
Swimming/Wading	18	60%	16	58%	
Sport Fishing	12	31%	16	40%	
Canoeing/ Sport fishing	8	43%	6	30%	
Power Boating	9	28%	12	32%	
Photography/Painting	20	28%	12	29%	
Hunting	15	10%	12	8%	
Jet-Skiing	29	5%	7	9%	
Commercial Fishing	94	1%	7	3%	

Table 8.1.Survey Results of Water Recreation Preferences for Residents
of the Saskatchewan River Basin, Alberta and Saskatchewan
Portions

Source: Ofosuhene (2003), p. 29.

According to this survey, most people made use of these recreational facilities in terms of walking/cycling on shores, or in terms of camping/cottages by the lakes and rivers.

8.2.4 Valuation of Water Recreation: Existing Studies

This section summarizes the results of a literature search for existing studies on the value of water for recreation. The search included the *Environmental Valuation Reference Inventory* (EVRI) by Environment Canada (2006), library sources form the University of Saskatchewan, and sources from the internet. The items found are listed in Table 8.2. Kulshrestha et al. (1988) estimated the value of water in recreation in the province of Saskatchewan to be anywhere between \$2.00 to \$787.00/dam³ (1984 dollars) in the short run. These values for recreation included only recreational water users and not existence, option, or bequest values for water. Translation of the 1984 value using the Consumer Price Index provides a value between \$2.90 and \$1,139.42/dam³.

Author's Name & Year of Publication	Location of Study	Method of estimation Preliminary Res Value of Wate Recreation	
Aiken (1985)	Fort Collins, Colorado	Contingent Valuation	\$1,344.5 million NPV state-wide
Carson and Mitchell. (1993)	Across US	Contingent Valuation	Annual Aggregate benefit of \$29.2 billion, (1990 U.S. dollars)
Greenley, Walsh, and. Young (1981)	South Platte River, Colorado	Contingent Valuation	Option Value for Recreational use was \$23 per household
Kulshreshtha and Gillies. (1993)	Saskatoon SK	Contingent Valuation	River Value of \$2.6 million for residents in 1989
Lang (Undated)*	Braddock Run Watershed, Maryland	Various, based on review of studies	WTP of \$10.98 to \$27.17 per day for trout fishing
O'Grady, Brockman and Kulshreshtha, (1987)	South Saskatchewan River Basin	Travel Cost (TC)& Contingent Valuation (CV)	WTP per trip of \$31.94 - \$72.91 (CV), & \$26.79 - \$62.03 (TC)
Sutherland and Walsh (1985)	Flat Head Lake, Montana	Contingent Valuation	WTP of \$7.37 for water recreation (1981 USD)
UMA Engineering ltd. (1990)	South Saskatchewan River Basin	Contingent Valuation & Travel Cost	Site values ranged from \$458,000 per season to \$20,000 per season
US fish & Wildlife Service. (2001)	Across US	Analysis of attendance, and expenditure data	\$6.39 per day for fishing in US
Ward, Raoch, & Henderson (1996)	Sacramento, California	Regional travel cost model	WTP of \$6 to \$600 per acre-foot of water.
Adamowicz and Phillips (1983)	Alberta	Willingness-to-pay	\$73.93 per day
Muller (1985)	Canada		\$20 - \$74 per dam ³
Frederick, Vandenberg and Hanson (1996)	U.S.A.	Review of Past Studies	US\$48 per acre-feet (Mean) and US\$6 per acre-feet at the median.

 Table 8.2.
 Estimate Value of Water in Water-Based Recreational Activities

* The exact year of the study is not listed on the National Resources Conservation Services website where this study is summarized. The website is http://www.economics.nrcs.usda.gov/technical/recreate/ and was updated on Feb 14, 2006

Review of other studies also indicates that the value of water in recreation is a highly variable entity and very location- and activity-specific. There is no question whether or not people value water for use in recreation. Whether they enjoy walking by a river or lake, swimming, or boating, there is a definite benefit. The problem is the non-market nature of these activities. Without an observable market for these services, there is difficulty in discovering what the economically efficient price for the water is.

The methods that have developed over time all offer a means of determining the WTP for the water recreation experience, each has its benefits and drawbacks in their application. Generally the best method is one that obtains greater amounts of good information for analysis. This, however, involves more time and financial resources to complete. Society needs to be willing to pay for the information needed to ensure sound choices about the use of natural resources are made.

There is a general lack of studies that address water value for recreation in the SSRB. The studies that could be found were from 1989 to 1993 and are in need of updating. Knowledge of water management issues and public attitudes has changed greatly since these last studies were done. Further research is needed to bring the current knowledge up to date, as well as add to the knowledge of the EV of water based recreation.

8.3 Value of Water for Waste Assimilation

8.3.1 Introduction

Flowing rivers have the ability to absorb and dilute all kinds of anthropogenicallygenerated wastes. Point source pollutants are identifiable and directly enter the streamflow. This type of pollutant is generally from industrial or municipal wastes, or from effluent from treatment plants. The wastes must be extensively diluted before being released into the environment. Pollutants discharged into the water contain several components: nitrogen (N), phosphorus (P), bacteria, viruses, heavy metals, and other toxins. These elements are all biochemical oxygen-demanding (BOD) materials which depletes the stream or river of oxygen. Water contamination of BOD materials has negative and potentially dangerous consequences not only to aquatic ecosystems, but to human health as well (Gibbons, 1986).

Dilution flows are the major tools used to minimize the impact of pollutant discharge into rivers and streams. Waste assimilation potential is increased when water is added to the river to augment its flow. This release of storage water is a very important use of reservoirs. Natural stream and river flow is dependent on seasonal variations within the hydrological cycle. Thus, the value of water in waste assimilation is also affected by natural changes in stream-flow (Gibbons, 1986).

8.3.2 Review of Studies Dealing with Value of Water

Gibbons (1986) suggests that water has a value in this use because waste assimilation reduces damages to the environment. This study outlined two methods for the valuation of water in waste assimilation. The first approach is the direct method in which the benefits of dilution are a betterment of water quality and reduction of ecological damage.

This approach can be difficult to implement because damages are difficult to estimate. Also, the dilution of wastes in a water body is not the only way to reduce or mitigate damages.

A second suggested approach is the alternate cost method. This method assumes that the value of dilution water is less than the cost of providing the same quality water (without dilution) as a result of treating the effluent. The alternate cost framework compares the cost of dilution in the river with an alternative means of treating polluted effluent. This is a particularly good technique for point source pollutants because alternate treatment costs are usually well known. Whichever valuation technique is used, it is imperative to also know the quantity of dilution water from which to determine the financial advantage of dilution. This requires knowledge of the water quality in a given stream at different levels of dilution flow (Gibbons, 1986).

The A-G study (1996) estimated the value and benefits of water in waste assimilation in Newfoundland. The authors used the replacement cost approach to put a value on water used by communities in the dilution of waste. The focus of the study was on industries which discharged wastewater directly into fresh water with the methodology being applied to municipalities. For municipalities, to calculate the indirect use value for waste assimilation it is necessary to know the average yearly per capita total treatment cost (\$/year) and the population of the municipality. Economic value of water treatment was calculated as the amount of untreated waste generated per person per year multiplied by the cost of treatment. In this study, this value was calculated to be \$1.79 million for a community of 28,539 people. To figure out the total benefit provided by water to municipalities which discharge into freshwater, this value was then added to the economic value of residual loading. The successful removal of BOD and total suspended solids (TSS) is calculated for each treatment and subtracted from the total amounts present in the untreated wastewater. These values for residual pollutants were then divided by the per capita generation of pollution (0.08 kg BOD and 0.09 kg TSS/person/year) to get an estimate of the number of people that would generate the amount of waste. Finally, the estimate was multiplied by the per capita treatment cost of treating municipal wastes to calculate the economic value of residual waste. In this study, the value of residual loading was found to be \$1.38 million. Therefore the total benefit to the municipality of water in waste assimilation is \$3.17 million (A-G study, 1996).

Using the alternative cost method, Gray and Young (1974) found the value of water in BOD assimilation to be \sim \$1.00 per acre foot (1980 dollars) in numerous river basins. In the removal of salt pollution and thus the reduction of the salinity of the river, the water was valued at \$9.00/af (1980 dollars). Waste heat from industrial processes also adds to

the pollution of the river. Using the same method, Gray and Young (1974) estimated the value of water in assimilating waste heat from the river at approximately 10.00/af (1980 dollars). For total waste assimilation (including BOD, salinity, and heat) the value of water is estimated to be 20.00/acre-feet in 1980 dollars, which works out to be $33.94/dam^3$ (2000 dollars) (Gibbons, 1986).

Muller (1985), following the study by Fraas and Manley (1984) for the USA, reported a value of water for waste assimilation ranging from \$1 to \$4 per dam³. Translating this value to reflect 2004 WTP resulted in a value of \$1.2 to \$4.8 per dam³. This value is closer to that reported by Fredrick, Vandenberg and Hanson (1996) of \$3 per acre-feet (at mean) and \$1 per acre-feet at the median.

Chapter 9

ECONOMIC VALUE OF WATER QUALITY

9.1 Degradation of Water Quality

Agricultural practices typically cause non-point source pollution that can have detrimental effects on both surface and groundwater quality. A primary source of this pollution is from the leaching of nitrogen fertilizers (Jordan and Elnagheeb, 1993). Other water quality problems that have also been identified with agricultural lands (USDA, 2003) include the following:

- Eroding and collapsing banks can remove valuable agricultural land, particularly if left unchecked;
- Soil from bank erosion becomes sediment in the waterway which can damage aquatic habitat, degrades drinking water quality, and fill wetlands, lakes, and reservoirs.
- Nitrates and pesticides can be toxic to humans and aquatic organisms;
- Fecal bacteria and other microbes in animal wastes can cause disease; and,
- Phosphate can promote algae blooms which suffocate fish and other aquatic organisms.

In addition, flooding caused by larger storm runoff can erode valuable cropland, and deposit debris in fields. Runoff from agricultural or urban land can contain harmful pesticides or fertilizers which can be deadly to aquatic organisms. The seepage of chemicals into the water table and nitrate-containing acid rain pose a threat to all organisms that depend on water for their survival-including humans (Gibbons, 1986).

Water quality is an issue that has come into a very close scrutiny since the occurrence of such problems in Walkerton, Ontario and in North Battleford, Saskatchewan. In part, this is because social costs from such disasters can be very high financially, and in part, because of their impacts on humans, such issues become highly emotionally charged. According to Livernois (2002), the tangible costs to society from any future contamination in magnitude similar to Walkerton are estimated at \$64.5 million. Although no economic costs for the North Battleford incident were reported, the Commission of Inquiry (see Laing, 2002) recommended a series of measures to protect water quality in the province, which may have serious cost implications both for the water users as well as for the regulating authorities.

Water quality affects households in many different ways. Besides human health and mortality impacts, it is also a factor in water-based recreation demand, as suggested by Parkes (1974). According to this study, users of the lakes with poor water quality are willing to pay a significant amount per user-day per season over and above the additional costs that are normally incurred in the recreation experience.

Improvement of groundwater quality is also linked to riparian area management. However, some caution is advised here as Raucher (1986) has reported that potential contamination sites are unique, and efficiency of alternative policies would be site specific. Furthermore, he noted that benefits from preventing groundwater contamination might not always exceed its cost. However, Ducks Unlimited (see Gabor et al. 2001) has argued that investment in wetland and riparian area protection and restoration is probably a cost-effective way to improve water quality.

Water quality affects households as well as the municipalities through increased water treatment costs. Thus, valuation requires a different methodology for the two groups of entities.

9.2 Valuation of Water Quality for the Households

Valuation of water quality improvements is a complex subject. Value can be estimated as the willingness of consumers to pay for improvements in the quality of water. Economic value of water quality improvements has been a subject of several studies in Canada. Hauser and van Kooten (1993), in a study of the Abbotsford aquifer, British Columbia, estimated the lower bound for these benefits at \$70/household in terms of defensive expenditures. Their willingness-to-pay was estimated between \$78-\$90 / household. Similar results were shown by Athwal (1994).

The only Saskatchewan study that has estimated the benefits of riparian area improvement is by Spasic (2002). He undertook a survey of 300 randomly selected Saskatchewan residents and estimated their willingness-to-pay for riparian management. The sample consisted of 60.7% urban households, 15.3% rural non-farm (towns) households, and 15.3% farm households. The average willingness-to-pay for such improvements was estimated at \$39.92 per household, with the median value being \$23.60 per household. The willingness-to-pay in this study was an average over all households. No distinction was made for the type of households.

The contingent valuation method (CVM) can also be employed as a direct means to estimate WTP (Jordan and Elnagheeb 1993). This method is useful in that it can elicit values for non-market goods by asking consumers what they would pay for water quality under certain conditions (Dybvig and Kulshreshtha, 1989). It includes option, bequest, and existence values for water as well as an estimation of option prices for water quality protection.

The CVM uses dichotomous questioning, checklists, open or closed questions to approximate the willingness of consumers to pay for the quality of water they use (Jordan and Elnagheeb 1993). The CVM method was used in 1991 by Jordan and Elnagheeb (1993) to determine what Georgia residents were willing to pay for water quality improvements. The study found that the median WTP among residents was \$ 65.88 USD/ year (\$75.14 CAD) for residents using a public water supply, and \$ 88.56 USD/year (\$101.00 CAD) for those using a private supply. These values are in 1991 funds. The

survey also questioned the income and residence of respondents. It was found that those with higher levels of income were willing to pay more for improvements in their water quality. Also, farm or ranch dwellers were willing to pay more compared to those living outside a farm or ranch setting (Jordan and Elnagheeb 1993).

Another CVM survey was conducted in 1994 in the Grand River Watershed in Ontario. Residents were asked a series of dichotomous choice questions regarding their willingness to pay for improvements in water quality and their willingness to accept compensation for a loss in water quality. The mean WTP for improvements ranged from \$2.33 CAD to \$11.50 CAD (1994 funds) per household per month. This was equivalent to \$27.96 to \$138.00 per household per year (1994 funds). These values were calculated only from surveys that provided positive WTP/WTA responses (Brox, Kumar and Stollery, 1996).

A benefit/cost analysis (B/C) can also be used to evaluate the benefits incurred from improvements in water quality over the cost of implementing best management practices (BMPs). The protection of water quality is not priced; therefore non-market valuation techniques must be used. Benefit transfer methodology is a means to estimate this using data from previous studies (Salvano et al., 2004).

Another method that can be applied for the valuation of water quality is the avertingbehavior costs. Here the costs incurred to select alternative sources of water can be equated to the value placed by people on having good quality water. The costs of practices such as buying bottled water, installing filtration systems, or changing routine for example, the boiling of contaminated water, are used to approximate the value of water quality improvements. This estimate provides a lower bound on the economic value because there are other extenuating household costs from water pollution that cannot all be accounted for in this manner (Dunford and Murdock, 1997).

Demand function techniques can be applied to residential, commercial, and governmental sectors to estimate the value of municipal water quality. Over time, data can be collected on both the price of water and the quantity consumed. When the water supply becomes contaminated, municipalities must embark on expensive measures in order to replace or treat the polluted water. These high costs are transferred to the customers in the form of higher water prices. The loss to the public as a result of contaminated groundwater can be used as a measurement for the value of non-polluted water. The loss to the public is the reduction in consumer surplus. When water prices increase, consumers receive fewer surpluses as the area under the demand curve and above the price line decreases (Dunford and Murdock, 1997)

No study was found that estimated the cost of water treatment with degraded water quality. In theory, one would expect these costs to be higher, but their magnitude is a subject for empirical scrutiny.

Chapter 10

SUMMARY OF VALUE OF WATER

10.1 Introduction

In the South Saskatchewan River Basin (SSRB), water is used in a variety of economic and social activities. All activities can be broadly divided into two categories: those that depend on withdrawal of water from the source, and those where water is used in the source itself, called in-situ use. Water is a valuable commodity. Not only does it directly sustain human life through drinking, but activities such as industry and irrigation rely on water for the manufacture of their end product. With such a variety of uses, water itself possesses a different economic value for each different function. This chapter provides a brief summary of the value of water in alternate uses which have been discussed in previous chapters of this report.

10.2 Value of Water in Alternate Withdrawal Uses

10.2.1 Value of Water in Agricultural Uses

Agricultural water uses include water used for irrigation and for stockwatering purposes. As noted in Chapter Three, irrigation is the largest use of water in the SSRB. For this reason, more attention was paid to this water use, although other uses were also studied.

Estimation of value of water for irrigation was undertaken using the concept of producer surplus. This is the additional income in the hands of the producers from converting crop area from dryland production system to irrigated production system. Furthermore, it was undertaken by assuming two time periods – short-run and long-run. In the short run, value of water reflects return to all fixed factors of production. In the long-run, however, all factors are paid for, except those that are owned by the producers. Thus, the long-run value of water represents returns to all owned resources (land, labor and capital). These values should not be interpreted as the producer's willingness-to-pay for the water, since they include returns to owned labor and management. In order to establish producers' WTP, such owned resources should be paid for first.

Value of irrigation water was also estimated on a disaggregated basis. All five sub-basins of the SSRB were included. Although marginal values of water were also estimated for the five sub-basins, these are not reported here. Table 10.1 below outlines the values of water for various agricultural uses. As one would expect, short-run value of water for irrigation was higher than that estimated for the long-run. On a per dam³ basis, water was estimated to have higher value in the Lake Diefenbaker Development Area (LDDA).

2001				
Sub-Basin	Short-run Value per Dam ³	Long-run Value per Dam ³		
	Irrigation			
	Alberta Portion of SSRB			
Oldman	\$78.13	\$38.60		
Bow	\$48.01	\$26.68		
Red Deer	\$52.24	\$26.15		
SSRB-AB	\$72.64	\$30.41		
	Saskatchewan Po	ortion of the SSRB		
LDDA	\$272.75	\$201.82		
SWDA	\$36.22	\$23.09		
Average SSRB- Saskatchewan	\$235.81	\$173.91		
]	Non-Irrigation			
Drought Proofing Saskatchewan		\$7.68 to \$11.05		
Drought Proofing Alberta		\$11.05 to \$28.87		
Livestock (this Study)		\$9.22		
Livestock (Bruneau 2004)		\$46,330		

Table 10.1.Value of Water in Agricultural Uses, SSRB,2004

Two possible explanations for this higher value could be hypothesized. One, water use per ha in the LDDA is the lowest of all sub-basins in the SSRB. As reported in Chapter Five, water use in the LDDA was reported to be only 2.21 dam³, whereas in Alberta for sprinkler irrigation water use per ha ranged between 4.08 to 5.78 dam³. This power water use may be a result of the pipelines that are used in much of the LDDA, whereas much of irrigation water in Alberta is distributed using canals. Two, a major part of the irrigated crop mix in the LDDA is under seed potatoes which are reported to yield higher net returns under irrigation than many other specialty crops.

In addition to increasing the profitability of crops, irrigation provides two other benefits to producers: one, it reduced the variability in production due droughts, and two, irrigated farms have a higher density of beef cattle than dryland farms. This is because of the higher availability of forages under irrigation. The second effect was not estimated in this study since it requires data that are not easily available. Value of water for drought proofing in the SSRB, adjusted for drought frequency, was estimated to range from \$7.68 to \$20.07 per dam³ for Saskatchewan and from \$11.05 to \$28.87 per dam³ for Alberta. This is the additional producer surplus created by having irrigation on farm.

Value of water for livestock production was estimated using the concept of alternative cost. If surface water was not to be available, producers would likely develop wells and use groundwater. However, this is a more expensive method of providing water for livestock watering needs. This value was estimated to be around \$9.22 per dam³.

10.2.2 Value of Water in Non-Agricultural Uses

In addition to agricultural uses of water, there are several non-agricultural water uses that are present in the SSRB. These include municipal, industrial, mining and thermal power generation water uses. These uses were valued using secondary data based on other studies. Preference was first given to Canadian studies, although the US studies were also consulted for a comparison purpose. Values for various non-agricultural water uses are shown in Table 10.2.

Type of Use	Author	Location of Study	Value per dam ³ in 2004 Canadian Dollars
Municipal - Residential	A-G Study (1996)	Newfoundland	\$561
Municipal – Industrial	A-G Study (1996)	Newfoundland	\$616
Municipal – Commercial	A-G Study (1996)	Newfoundland	\$638
Municipal - Residential	Bruneau (2004)	SSRB	\$1,270 to \$2,040
Municipal – Commercial and Industrial	Bruneau (2004)	SSRB	\$1,410 to \$2,170
Industrial	Bruneau (2004)	SSRB	\$80 to \$49,000
	Renzetti (1986)	British Columbia	\$1.40 to \$71.40
Mining	Kulshreshtha et al. (1988)	Saskatchewan potash mining	\$347.47
	A-G Study (1996)	Newfoundland	\$15.91
Thermal Power	Muller (1985)	Canada	\$9.60
Generation	Bruneau (2004)	SSRB	\$1.12 to \$627

Table 10.2. Value of Water in Non-Agricultural Withdrawal Water Uses

Value of water in the SSRB was estimated by Bruneau (2004) using 1996 community water use data for the SSRB communities. This value was \$1,270 to \$2,170 per dam³. In this study no distinction was made among the various users of municipal water. A study for Newfoundland was then used (see A-G Study, 1996). The value of water was found to be higher for commercial operations in a municipality, followed by industrial and then residential and other users.

Industrial water use valuation is very complex and requires primary data collection. This was not attempted in this study. Values provided by Renzetti (1986) were updated for this

study. These values ranged from \$1.40 per dam³ to \$71.4 per dam³ for the food and beverage industries.

No study on value of water use for mining was found except the earlier Saskatchewan study by Kulshreshtha et al. (1988). This value was for potash mining and when projected to 2004 value was estimated to be \$347 per dam³. The only other Canadian estimate that estimated value of mining water was that by A-G study (1996) for Newfoundland, where the value of this water use was significantly lower than that for Saskatchewan (at \$15.91 per dam³). However, the nature of mining for which this water was used was not clear from the study.

Value of water in thermal power generation for the SSRB was estimated by Bruneau (2004). This value was estimated as a range between \$1.12 and \$627 per dam³.

10.3 Value of Water in Alternate In-Situ Uses

In addition to the withdrawal uses of water, several economic / social activities are undertaken using water in the SSRB. These activities include generation of hydroelectric power, use of reservoirs and rivers for recreational activities, and use of rivers for waste assimilation. Results of value of water in these uses are summarized in Table 10.3.

Type of Use	Author	Location of Study	Value per dam ³ in 2004 Canadian Dollars
	Frederick, Vandenberg and Hanson (1996)	USA	\$60.29
Hudro la tria Daviar	Bruneau (2004)	SSRB	\$0.11 to \$0.24
Generation	Kulshreshtha et al. (1988)	Saskatchewan Short-run Base Short-run Peak Long-run	\$1.57 \$15.31 \$0.27
Recreation	Kulshreshtha et al. (1988)	Saskatchewan	\$2.90 to \$1,139.42
	Muller (1985)	Canada	\$1.20 to \$4.80
Waste Assimilation	Kulshreshtha and Gillies (1993)	Saskatoon (South Saskatchewan River)	\$15.92 to \$21.71 million *

Table 10.3. Value of Water in Non-Agricultural In-Situ Water Uses

* Total value for waste assimilation. Value per unit of water not estimated.

The only study that estimated a value for the SSRB was that by Bruneau (2004) who estimated the value of water in hydroelectric power generation to be very low (between

\$0.11 to 0.24 per dam³). No other study was found that was close to these uses in the SSRB. Extending the review to other Canadian studies led to a study by Muller (1985) that reported value of water for waste assimilation to range from \$1.20 to \$4.80 per dam³. The only study on value of water-based recreation was that undertaken for Saskatchewan by Kulshreshtha et al. (1988), where the 2004 project value was estimated to vary from \$3 - \$1,139/dam

PART THREE

CLIMATE CHANGE AND VALUE OF WATER

Chapter 11

INTERRELATIONSHIPS BETWEEN CLIMATE CHANGE AND VALUE OF WATER

There is a general agreement that climate change (through greenhouse warming) will have major impacts on water resources. Many of these changes would be a result of changes in the hydrological cycle, altering precipitation, the magnitude and timing of runoff, and the intensity of floods and droughts in various parts of the world (Frederick and Major, 2002). Accordingly, sensitivity to climate in Canada and the cross-cutting nature of the water issues are important considerations for future water management in semi-arid and arid regions of Canada, such as the SSRB. Decreased water levels, according to Lemmen and Warren (2004) would impact many sectors, including transportation, tourism and recreation, fisheries, industry and energy, municipalities, agriculture and health. It is reasonable to predict that the value of water will be influenced under climate change, but to what extent is highly unknown.

Study of climate change impacts on water resources is a complex area. Even more complex is the investigation of the issue of how water will be valued under a different climate regime. As will be made clear later on this chapter, very few studies have addressed this issue, either for SSRB, Canada, or elsewhere in North America.

The primary objective of this chapter is to review the nature of studies undertaken on this subject, and to develop a conceptual model for the study of water values. It begins by outlining the conceptual interrelationships that would be used in understanding climate change and water value. This is followed by a review of the literature on climate change impacts on water supply, water use and water value. The last section proposes a methodology for valuing water under expected climate change.

11.1 Conceptual Interrelationships between Climate Change and Value of Water

Climate change refers to changes in the climate of the earth due to the increased amount of heat-trapping greenhouse gases found in our atmosphere (Government of Canada 2004b). It is an issue that has become of great concern to the Canadian economy over the past few years. The Intergovernmental Panel on Climate Change (IPCC), Third Assessment Report (TAR) is unequivocal that the climate is changing and with limitations; they have both detected²³ and attributed²⁴ climate change to natural and anthropogenic forcing agents (Albritton et al., 2001). However, the magnitude and

²³ Detection shows that a change in the climate is statistically significantly different from that can be explained by natural variability, but does not necessarily imply a particular cause (Albritton et al., 2001).

²⁴ Attribution, nonetheless, establishes a cause and effect with a specific degree of confidence (Albritton et al, 2001).

direction of expected climate changes has been both hard to define, as it would not be correct for statistical models to extrapolate past data (Albritton et al., 2001).

Major physical impacts in the context of water resources include the following:

- An increase in the average temperature
- An increase of slight decrease in some region in precipitation
- Change in the intra-seasonal distribution of precipitation, and
- Increase likelihood of extreme events, such as floods and droughts.

The magnitude of these changes would vary according to location, although higher impacts are predicted for the higher latitudes, such as the SSRB and northern Prairies. The IPCC predicts a temperature increase of between 1.4° C to 5.8° C by the year 2100 (Natural Resources Canada, 2002), which will likely have great impacts on the society. Change in the intra-seasonal distribution of precipitation would have an impact on agricultural water use, particularly for irrigation. Similarly, increased frequency of droughts would reduce the net returns from dryland agriculture and may provide enough incentives to producers to switch to irrigation. Other sectors may also find the need to make adjustments in their water use under an altered climate regime.

For the prairies, temperatures would increase by 2 to 4.5 degrees Celsius, with a greater increase in the southern most parts of the prairies. The area covered by the SSRB would see mean annual minimum temperatures rise by 4 to 4.5 degrees Celsius of the 1961-1990 mean values (-5 to 0). Mean annual maximum temperatures would rise by 3 to 3.5 degrees Celsius from the 1961-1990 mean values (9 to 12). Precipitation in the southern most prairies would not increase more than 5% from the 1961-1990 mean (an increase of about 3.75-15 mm from the 1961-1990 mean values 285-450 mm). Despite the precipitation increase the moisture deficit (precipitation minus the potential evapotranspiration) would increase in all of the prairies, except for the mountains. The moisture deficits for southern Alberta and southern Saskatchewan would be between 375 to 490 mm between the forecasted 2040-2069 period (they used to be between 300-425 mm between 1961-1990). The Temperature Factor or Effective Growing Degree Days (EGDD) calculated from the season length, degree days, and day length is expected to be around 2000 to 2400 for the southern prairies, which is a considerably longer growing season from the 1200 to 1650 EGDD values seen between 1961 and 1990.

Impact of climate change on value of water would be a culmination of impact on water supply (availability) and its use, further complicated by institutions and their policies. Since the focus of this study is not on the water supply issues, these are reviewed in lesser details. More details are described for water use, with implications for water value.

11.1.1 Impact of Climate Change on Water Supply (Availability)

Literature is very rich in terms of impact of climate change on water supply. Early studies on climate change impacts on water supply or on hydrology include Stockton and

Boggess (1979), Revelle and Waggoner (1983), Nemek and Schaake (1982), Gleick (1987b) Lettenmaier et al., (1992), Waggoner (1990), Frederick, Vandenberg and Hanson (1993). Investigations into the relationship between climate change and water were commissioned by the American Association for the Advancement of Science (AAAS) panel on climate variability, on climate change, and on the planning and management of US water resources. Based on a review of various studies, the following impacts are discernible:

Change in Temperature and precipitation regimes affecting stream flow: Most (1)studies point to the fact that changes in temperature and precipitation will likely effect run-off and evaporation patterns, the amount of water stored in glaciers, snow packs, lakes, wetlands soil moisture and ground water, but the magnitude and direction of these changes are uncertain. In general, it is predicted that climate change will increase precipitation, evaporation, water temperature and hydrologic variability. In the context of the SSRB, the most important stress to the water supply that may occur as a result of climate change is the decrease in snowmelt runoff, a large source of water. Of the total water supplied to the South Saskatchewan River Basin, 90 per cent flows from the Rocky Mountains while the remaining 10 per cent comes from prairie run-off (Prairie Adaptation Research Collaborative, 2005). Already, 32 significant trends have been found in the flow of the North and South Saskatchewan Rivers at the Alberta-Saskatchewan border, only five of which are increasing. The remaining 27 trends show a significant decrease in the flow of these rivers (Shrubsole and Halliday, 2003).

The AAAS panel's final report was edited by Waggoner (1990). In this report, it was mentioned that even though the panelists could forecast that temperatures were rising, there was less clarity on the direction regional precipitation would take. However, for the Canadian prairies the balance of studies drawn under the IPCC TAR chapter on North America (Cohen et al., 2001) as well as other studies indicate that winter precipitation would increase with a shift from nival to pluvial based precipitation (snowmelt dominated to rainfall dominated regimes).

Among the expected impacts of climate change on stream flow and water yield in the Canadian prairies as a result of increased temperatures, are greater increases in winter and spring temperatures than in summer. These temperature increases would subsequently raise potential evapotranspiration²⁵ (Cohen et al., 2001). Unlike an increase in potential evapotranspiration, actual evapotranspiration could increase or decrease, depending on soil moisture availability of each region at that time (Frederick and Major, 1997). The expected increase in temperature would be such that even under expected unchanged or increased (winter) precipitation, stream flows would decline in the summer for the prairies (Frederick and Major, 1997). Increases in temperatures would produce early freshets characterized by

²⁵ Evapotranspiration is the sum of both pan evaporation from soil moisture and transpiration from crops and trees that lie upon the respective land.

spring snow melt and shifting of peak stream flow from summer to spring (Cohen et al., 2001).

The sensitivity of the above discussed stream flow to climate variables (temperature, evapotranspiration, precipitation) is greater in semi-arid or arid regions (Schaake, 1990). Estimates of runoff elasticity²⁶ are higher in the more arid zones where soil moisture is limited (Schaake, 1990). This sensitivity is also greater when snowfall is the primary source of precipitation and spring/summer snowmelt is the primary source of stream flow (Frederick and Major, 1997). It is likely, therefore, that the semi-arid SSRB, which also depends on snowfall as the primary source of precipitation in stream flow more sensitive to a reduction in precipitation or to an increase in temperatures or both.

- (2) <u>Impact on water quality</u>: All of above noted changes would likely have a negative impact on water quality (Natural Resources Canada, 2002). Besides lower summer flows, lower quality water is expected with higher suspended solids from more frequent severe storms and potential re-growth of bacteria resulting from higher water temperatures (Natural Resources Canada, 2002; Natural Resources Canada, 2004).
- (3) <u>Extreme Events</u>: It is also predicted that extreme hydrologic events such as ice storms, droughts and floods will increase due to climate change (Alberta Government, 2004). An increase in the drought frequency could have a devastating effect on the SSRB economy, as suggested Wheaton et al. (2005).

Spring floods are a characteristic of many Canadian rivers and climate change could significantly change the magnitude and frequency of spring floods (Environment Canada, 2004). Because peak stream flow moves to the earlier spring, stream flow in summer would decline. However, greater atmospheric temperatures would melt snowcaps faster, and river basins fed by snowcap melt influenced by earlier snow melt would see peak stream flow earlier in spring and be rendered with lesser snowcap cover to feed them in summer (Cohen et al., 2001). This early onset of spring peak flows may increase flooding in the spring and water shortage in summer, with the increased likelihood of severe drought and increasing aridity of semi-arid zones (Cohen et al., 2001).

(4) Impact on groundwater and other water bodies: A decline in the stream flow and the change in the intra-seasonal distribution of precipitation along with the impact on evapotransipration may drain groundwater levels, water storage as glaciers, snowcaps as well as negatively impact wetlands, with respect to the Prairies (Environment Canada, 2004). Moreover, the decline in summer stream flow would negatively impact the ground water and wetlands in the prairies (Natural Resource Canada, 1997). An impact assessment on the ground water supply (in the Ogallala aquifer in North Dakota) suggests that climate change would make

This is the percentage change in runoff for a one percent change in temperature and precipitation.

122

26

the mining of this aquifer even less sustainable. The impact assessment states that increased evaporation will counter the increased precipitation in recharging basins. A caveat, though, is that our ability to measure the potential impacts of climate change and variability on ground water is limited due to the following (Environment Canada, 2004). First, the magnitude and timing of the impact of climate variability and change on aquifers (reflected in water levels) are difficult to recognize and quantify due to the difference in time frame between climate variations and the aquifer's response to them. Second, different types of aquifers respond in different ways; shallow aquifers are more responsive to stresses imposed at the ground surface compared to deep aquifers. These aquifers are affected by local climate changes and deep aquifers by regional climate changes. Shallow aquifers will also be more impacted by climate variability (which has a shorter term than climate change), whereas, deep aquifers have an increased capacity to buffer the effects of climate variability (Environment Canada, 2004).

Moreover, the decline in summer stream flow would negatively impact the ground water and wetlands in the prairies (Natural Resource Canada, 1997). The impact assessment states that increased evaporation will counter the increased precipitation in recharging basins. A caveat, though, is that our ability to measure the potential impacts of climate change and variability on ground water is limited due to the following reasons (Environment Canada, 2004):

- (i) The magnitude and timing of the impact of climate variability and change on aquifers (reflected in water levels) are difficult to recognize and quantify due to the difference in time frame between climate variations and the aquifer's response to them.
- (ii) Different types of aquifers respond in different ways; shallow aquifers are more responsive to stresses imposed at the ground surface compared to deep aquifers. These aquifers are affected by local climate changes and deep aquifers by regional climate changes. Shallow aquifers will also be more impacted by climate variability (which has a shorter term than climate change), whereas, deep aquifers have an increased capacity to buffer the effects of climate variability (Environment Canada, 2004).
- (5) <u>Soil moisture shortage</u>: Associated with changing patterns of precipitation, is the availability of soil moisture that governs the use of water by crops, and thus their productivity. These reductions are also predicted by the climate change models.
- (6) <u>Interaction between surface water and groundwater</u>: These interactions exist and may impact surface water systems. Interactions between groundwater and surface water include the following:
 - (i) Wetlands, supported by and interact strongly with groundwater in some areas;

- (ii) Stream flow is sustained by groundwater when contributions from direct precipitation (base flow) are lacking;
- (iii) Influent rivers, which contribute recharge to aquifers;
- (iv) Springs, which are groundwater discharge features, and
- (v) Coastal waters, which receive discharging fresh ground water to support delicate ecosystems (Environment Canada, 2004).

Therefore, climate variability that would impact groundwater would impact these other systems as well (Environment Canada, 2004). Qualitative assessments of hydrographs for Saskatchewan and Alberta have been made by Gabert (1986) and Maathuis and van der Kamp (1986).

Some evidence of the above changes has started to emerge. In the southern prairies, winter temperatures increased around three degrees Celsius from 1970 to 2000; spring temperatures increased a modest 0.3 degrees with no change in summer temperatures (Bruce, Martin and Colucci, 2003). Winter precipitation declined 10% but no change was seen in spring/ fall (Bruce, Martin and Colucci, 2003). Temperature increases in the last 75 years have led to a 40% reduction in stream levels in many Alberta rivers (Brandes and Ferguson, 2004), a 7% decline in the past 30 years in St Mary's, though minimum flows have increased (Bruce, Martin and Colucci, 2003). The flow declines were partly due to increased upstream consumption and partly to climate change (Bruce, Martin and Colucci, 2003). Natural flows during the irrigation period of April to October declined from 800,000 dam³ to 700,000 dam³ from 1910 to the 1990's (Bruce, Martin and Colucci, 2003). A water balance model, applied to the SSRB, suggested that that the Oldman and Bow Rivers may experience a serious water supply problem if they intended to divert enough water to sustain current level of irrigation development (the increase in demand and decrease in supply suggested that the Oldman and Bow Rivers may experience a serious water supply problem (Byrne, Barendregt and Schaffer, 1999). Furthermore, glacial-melt water flows, which contribute significant volumes of water to rivers such as the Bow during summer months, will cease to exist as key glaciers disappear within the next 50 to 60 years. This will have significant impacts (10% of flow) on water availability for irrigation and in-stream flows (Cohen et al., 2001).

Canadian prairies have been the most susceptible region to droughts in Canada due to the high variability of precipitation in time and space caused by disruptions to an expected precipitation pattern and can be intensified by an exceptionally high temperature that increase evapotranspiration (Environment Canada, 2004). High surface temperatures could intensify drought conditions through enhanced evaporation in summer and increased sublimation and melting of the snowpack in winter (Environment Canada, 2004).

11.1.2 Water Use / Demand of Water under Climate Change

Studies of climate change impacts on water use/demand, or response of water users to changes in runoff are relatively few, particularly for the SSRB or other parts of Canada. Studies have been undertaken for other locations and include those by Lettenmaier and Sheer (1991), Gleick (1993), Cline (1992) and Titus (1992). Gibbons (1986) illustrates valuation methods, demand elasticities of water for each of the different competing consumptive uses like irrigation, industry, municipalities, waste assimilation as well as non consumptive and instream uses like hydropower generation, aesthetics, recreation and navigation. Although Gibbons does not discuss the impacts of climate change on water value, her demand elasticities for each of the competing water uses are used by Titus (1992) and Hurd et al. (1998) for valuation of climate change on different water uses.

The hydrologic effects of climate change discussed above will put stresses on the amount of water available for withdrawal uses, especially in already dry areas of the country, such as the SSRB. An already reduced volume of water in the Saskatchewan Rivers puts increased pressure on allocation, and increases the conflicts between water users (Shrubsole and Halliday, 2003). These probably have consequences for municipal water supply, navigation, hydroelectric power, recreation and ecosystem health (Natural Resources Canada, 2002).

Impact of climate change on water use may be induced through international sources as well as national situation. This is due to relative competitiveness of Canadian products. Climate change could alter market variables like product prices and input prices. Although production is determined locally, by local weather conditions, international markets determine many market prices. Demand for Canadian products would be determined by how Canadian productivity changes relative to the rest of the world. If our competitors' experience sharp declines in some of the crops we are capable of producing under a changed climate scenario, this situation would be beneficial to some of our farmers (Senate Committee, 2003). Although food production is likely to decline in most critical regions (e.g., tropical and subtropical areas) as a result of global warming, agriculture in developed countries may actually benefit where the technology is more available and if appropriate adaptive adjustments are employed (Environment Canada, 1997).

Issues of climate variability and climate change are expected to have a significant effect on agricultural practices, which in turn will affect water demand and availability. There are drought sensitive regions in Southern and Eastern Alberta, which currently do not have sustainable water supplies, Agricultural activities found in these regions (livestock operations and grain farming) need a consistent supply of good quality water (AAFC-PFRA, 2003). The overriding issue, therefore, tends to be an inadequate supply of acceptable water quality for agricultural use (AAFC-PFRA, 2003). Excessive withdrawals of ground and surface water supplies, particularly during periods of drought, not only reduce groundwater and reservoir levels but can also degrade water quality. Nearly all livestock water use in Canada is from ground water sources (Environment Canada, 2004). Alberta is viewed as having more groundwater than surface water resources but there is no detailed data to indicate magnitude, quality or location of these. Moreover it is considered that only 0.01% of these are recoverable (AAFC-PFRA, 2003). It is encouraging to observe great progress made in reducing surface water use for irrigation; it remains to be the largest consumer of water. Changes in demand for groundwater are also likely to occur as development increases and as land use changes or intensifies. While these effects will be largely driven by population increase, climate variability and change may also play some role.

Scarcity of surface water could impact many aspects of agriculture, including supplies for irrigation and watering livestock. Warmer conditions in the summer can lead to stress on livestock due to dry pastures, poor hay and feed production and shortages of water. On the other hand, increased temperatures during the winter months can reduce the cold stress experienced by livestock remaining outside, as well as reduce energy requirements to heat the facilities of those animals inside. In areas where moisture is not a crucial issue, the increased temperature would have a positive effect on growth of the pasture, and provide better feed for the livestock.

Higher ambient temperatures with climate change imply greater cooling requirements at industrial plants, which will drive increased water demands, particularly during the summer. This increased water demand may add to the increased competition among other sectors for available water supply. Should climate change mean decreased water flows, this problem would be exacerbated. Climate change will also alter the demand for some other products, which changes the water demand again (Environment Canada, 2004).

An assessment of climate change on agricultural practices for the prairies was carried out by Prairie Adaptation Research Collaborative (PARC) who used a Canadian GCM (CGCM1) to predict scenarios for the years 2040-2069 (Nyrfa and Harron, 2005)²⁷. For the area covering the SSRB, the Land Suitability Rating System dropped from a rating of 3A (3 implies moderate limitations; A implies limited by aridity) between 1961 and 1990 to 4A (4 implies severe limitations) for the forecasted period 2040-2069. The SSRB would face a warmer and drier growing season (despite greater precipitation) and degradation by one climatic class. A further 1% of areas in the southern prairies would experience two class degradations. Currently, none of the climatically marginal 4A land classes is cropped (Nyrfa and Harron, 2005). Much of the present grain growing area would face a more severe climate limitation for spring seeded small grain production. The authors suggest this would possibly mean greater summerfallow extents to compensate for aridity, or narrower range of crops within these areas or pasture lands (Nyrfa and Harron, 2005). Other studies show that in recent years many farmers have begun to diversify into specialty crops (e.g., mustard seed, dry peas, and lentils) and in areas of extreme moisture deficit, extensive irrigation systems have also been developed (Environment Canada, 1997). Livestock operations across the prairies are also diversifying with the introduction of buffalo, emus, and elk, which are more adaptable to

²⁷ The results of the CGCM1 were within the range projected by two other models, the British Hadley Centre GCM and a second, a Japanese CGM (Nyrfa and Harron, 2005).
the climate of the prairies than traditional livestock, and which might reduce some of the climate-induced stress. More than half of Canada's beef cattle are now raised in western Canada, and hog production is becoming increasingly important (Environment Canada, 1997). Livestock is more resistant to climate change than crops because of its mobility and access to feed. Livestock production could be one of the key methods for farmers to adapt to climate change through diversification of their farming mix (Environment Canada, 1997).

More work will be required to study the adaptability of the current crops to such warmer drier climates, as well; the study used only one scenario²⁸. Moreover, since other factors such as economic growth could mask the sensitivities to climate change and variability, it may be difficult to separate the impact of climate change on agriculture.

The indirect effects of climate through its effect on energy may be just as important as the direct effects (activities such as irrigation, grain drying, seeding and harvesting are examples of climate dependant agricultural activities that have high energy uses). For example, transportation energy use is affected by climatic variation (winter energy use by cars is lowered in mild winters as compared to cold winters). An increase in mean annual temperature by several degrees centigrade would result in longer frost-free period, in more evaporation in summer, and in fewer shorter cold spells in winter for which the possible postulated implications by Environment Canada (1997) are:

- (1) Reduced winter heating load and potential for increased summer cooling loads;
- (2) Surface waters likely to be warmer and the subsequent increased evaporation resulting in reduced volumes and water quality;
- (3) Changes to soil water availability could result in changing land use, particularly in marginal areas;
- (4) The demographic changes that would be required to accommodate changed land use. Domestic water use especially for showers and watering lawns and gardens, is also sensitive to climate variability;
- (5) Climate also influences the demand for industrial, thermo electric power, and instream water. The demand for cooling water would be affected by higher water temperatures that reduce the efficiency of cooling systems and higher air temperatures that alter the demand for air conditioning and space heating (Frederick and Schwarz, 1999).

A significant potential impact on hydropower production for the SSRB (as well for all three provinces) would occur through the effect of droughts and increasing temperatures on river flow. Glaciers in the eastern Rocky Mountains have lost between 25 and 75 percent of their maximum volume over the last century. This trend will augment stream base flow in the shorter term (20 to 30 years). In the longer term (30 to 100 years), the reduced melt volumes from glaciers will reduce river flow, particularly in summer, from these sources. Loss of base stream flow is especially important during dry summers when

²⁸ The IPCC recommends using multiple simulation scenarios such as those depicted in www.cics.uvic.ca/scenarios/.

the demand for electricity is high. Decreased base flow contribution and changes in timing would influence hydro-power reservoir operating strategies in preparation, for example.

Reduced hydropower production caused by decreasing water flow in a changing climate could be compensated by increasing thermal power production. This will likely result in an increase in fossil fuel consumption and GHG emissions (Environment Canada, 1997). An assessment of possible impacts on the energy sector in Alberta reported the following impacts:

- (1) Net savings of about 0.5 percent of total electrical consumption resulting from the balance of the decrease in winter months and increase in summer months (heating degree-days projected to decrease by 20 percent),
- (2) Natural gas consumption would flatten out, decreasing in winter (about 80 percent of the use is for heating, and this amount would decrease by about 20 percent),
- (3) Overall system efficiency would increase (investment saving of over \$300 million),
- (4) Marked shift in electrical energy requirements within specific sector requirements within specific sectors (e.g., irrigation energy demands could increase by 20 percent) (Environment Canada, 1997).

Thermal power stations become less efficient as surface temperatures increase and potentially, volumes decrease. Thermoelectric cooling process heats the water which is then returned to the stream; only about two percent of the water is consumed through evaporation. Concerns over the environmental impacts of the large withdrawals and heated return flows associated with once-through cooling systems have brought a shift in recent decades to wet tower cooling, which are about 2.4 times more expensive but reduce withdrawals from 47 to 3 gallons per kilowatt hour produced (Frederick and Schwarz, 1999). Hydroelectric production will have to compete with a number of other uses, primarily agricultural, for the diminishing water supply.

Oil production over much of the Prairies will rely increasingly on the availability of water, either for water-flooding ²⁹ or for the production of steam for thermal recovery of heavy oil and bitumen. Where these procedures rely on the availability of near surface ground water or on surface water, there is the potential for oilfield use to compete with other uses.

Alteration of the hydrologic cycle can result in impacts on many water users. These effects will likely lead to a decrease in the amount of water available for the multiple users. Depending on the season, it may also lead to increased stresses on the in-stream availability. There may also be increased pressures to transfer water from agricultural to municipal, industrial, and environmental uses.

²⁹ Water can be pumped into the reservoir as a liquid to assist in pressure maintenance and to help push more oil to the producing well. In heavy oil and bitumen deposits steam is forced into the reservoir to make it move more freely.

11.1.3 Impact of Climate Change on the Value of Water

Relative to impact of climate change on water supply and use, very few studies have addressed the issue of economic value of water. One such study is by Hurd et al. (1998), a study based on the work started by Vaux and Howitt (1984). The FAO report on water valuation report anecdotally mentions climate change as a driver in the valuation of water (Turner et al., 2004).

11.2 Conceptual Approach to Estimation of Water Value under Climate Change

Under dwindling water supplies, value of water will be determined by the level of effective water demand/use. Given the nature of linkages between water use and climate change, one can formalize different types of impacts of climate change on the society through water resources. These can be categorized into the following categories:

- (1) First generation effects,
- (2) Second generation effects, and,
- (3) Third generation effects.

Each of these impacts is discussed below.

11.2.2 First Generation Effects - Climate Change and Water Use Patterns

The first generation effects include the direct effects of climate change on water use levels, and through that on various water users. First and foremost, the impacts of climate change will be realized by the direct water users. To domestic water users, this would translate into a higher water use, and thus, if there is a charge for water, a higher outlay for obtaining water. To the irrigators, this may translate into altered level of profitability from irrigating various crops, and into a change in their decision to irrigate or not.

Water resources are involved directly or indirectly, according to the World Health Organization (WHO, 1978), in 80% of all diseases. Both surface and groundwater receive large amounts of industrial waste which can cause health hazards, namely cancer or cardiovascular diseases. On the other hand, water contributes in many aspects to our good health by its recreational and environmental value. Mineral waters are used to treat rheumatic and digestive problems, and for bathing and drinking. All these health aspects may be influenced by the future climatic changes.

11.2.2 Second Generation Effects - Impact on Water Using Sectors

These impacts would follow the first generation effects. For example, the first generation impacts from adjustments in irrigation would lead to altered income levels of agricultural

producers. This may be a result of higher outlay for water, unless new technology of water use can be adopted. Some of these water saving technologies are capital-intensive. Both of these measures would have implications for the economics of farming in the region. Livestock production may also require more/less inputs under the changed climate, which would translate into change in the relative competitive position of livestock production, particularly in colder and harsher climates.

The indirect effects of climate change may come through the following types of changes:

- (1) Change in the demand pattern by consumers. The climate would result in some substitution of products by those which become more urgently needed under the global climate change. Food consumption as well other demand for certain types of apparels would undergo some changes under the changed climate.
- (2) Change in the power requirements. An important change would be in terms of changed energy demand patterns. In most cases, this would mean higher power needs, which would increase the water requirements in the region.

11.2.3 Third Generation Effects - National and Regional Level Effects:

These impacts would be a culmination of the previous two types of impacts. These would be more felt at the aggregate levels, regional or national, and in some instances at the international levels.

The impact of climatic change will be different in developed, transition and developing countries. In developed countries the major problems will be connected with the increase of water pollution due to reduction of flows. In the transition economies, the general tendency to cope with the climatic changes will be the same, but due to the lack of capital investment this process may be hindered and the negative impacts of the climatic changes may be quicker that the economic counterbalance actions. The developing countries may be affected by the climatic change catastrophically. Many regions are not served by the public water supply and diseases caused by the pollution of drinking water are the most important aspect of water related diseases. The climatic changes can even worsen this situation by an increase in pollution, by reduction of the water resources for drinking purposes, and by reduction of the scarce capital that can be allocated to development of water resources systems with drinking water supply objective. In 1980, around 25,000 people died every day because of lack of clean drinking water (WHO). The warmer temperature will increase the drinking water requirements, and unless the quantity and quality of drinking water is enhanced, the water related diseases will increase in number and seriousness.

The climatic change may necessitate additional area under irrigated agriculture. In developing countries, the irrigated agriculture may be the source of increased incidence of schistosomiasis. The irrigation ditches provide an ideal habitat for the snail hosts and the irrigation workers become the host for the schistosome worm.

Adjustments in food supply could trigger a variety of socio-economic and political problems. The trade patterns among countries as well as among regions may be altered, which may ultimately affect inflation rate, and balance of payment situation. Increased use of water will result in an increased competition for water, which may lead to more conflicts along water users regionally as well as internationally.

How would this translate into value of water is a subject for future studies? Studies that attempt to deal with values of water resources under climate change (Cline, 1992; Titus, 1992) are according to Hurd et al. (2002) "divorced from that of economic response", and are mere "back of the envelop estimates". One needs to develop models that take into account water demand, supply and society's response to adaptation to the climate regime in an integrated manner.

Figure 11.1 shows that all climate-induced physical changes would affect water supply and use. Water use would be affected by all three types of changes listed above. Valuation of water could be modified by a number of related factors. First and foremost is the policy on charging for water. Property rights on water use licenses would also play an important part in setting the price of water. On the use side, cost of re-use and water conservation would be a major factor determining the value of water. On the availability side, cost of developing new water sources (to replace and/or supplement those affected under the climate change) would be a major consideration in valuing water. Each of these issues is described in the next section.

11.3 Water under a Climate Change Regime

Water demand forecasting is important in the context of climate change since the society must prepare to adapt to the inevitable changes. Prediction of climate-induced water use change must encompass judgments on two types of relationships. One, the relationship between water use and characteristics that can alter the use level and/or its pattern of use, and, two, how the climate would change alter the relationship between water use and the characteristics. Since water use is diverse, and a different set of characteristics affect each water use, it is desirable to analyze total water use by categorizing it by major types.

Diversity of water use suggests that there is a different impact on demand for water for human settlements, industrial demand, electric power demand, agricultural demand (combined with the changes of water quality especially salinity problem), navigation, waterways and water related recreation demands. Therefore, vulnerability of the society to climate change reflected in these different categories of water demand should be analyzed separately. Four major water uses are discussed in this section. These are domestic, industrial including power generation, irrigation, and in-situ use such as recreation.

Figure 11.1. Interrelationships among Climate Change Attributes and Value of Water

11.3.1 Domestic Water Use Levels

Significant variations in residential water use occur according to the time of the day, and the season³⁰. This water use also depends on climatic conditions, cultural practices, economic characteristics of the water users, and cost of water to the user (Dworkin, 1975). The change of climate will be reflected directly in the change of domestic water requirement and indirectly by socio-economic changes induced by climate change.

A general form of a water use/demand relationship for domestic use can be specified as follows:

$$Q_{DOM} = \beta_0 + \beta_1 * P + \beta_2 * N + \beta_3 * SZ + \beta_4 * CL + \epsilon$$
(11.1)

where, Q

Quantity of water used by a resident, in a single billing period,

Price per m³ of water per billing period, P

N Income of the household per annum,

³⁰ Factors affecting demand of water in alternate uses has been reviewed by Kindler and Russell (1984).

- SZ Size of the family 31 ,
- CL Climatic attributes of the region where the household is located,
- β 's Parameters to be estimated, and
- ε A stochastic error term.

The effect of climate in this equation can be direct as well indirect through the relationship between the characteristics of the households and their respective water use. The direct relationship between climate and water use is captured by the parameter β_4 . The indirect impact of climate change can be specified as follows:

 $\beta_k = f(CL, CUL, INST)$ for k = 1, 2, 3. (11.2)

where, CUL Cultural Reference for the region, INST Institutional Framework facing the households.

In other words, the relationship between price, income of the households, and size of the households would vary from one region to the other in response to climatic variability, cultural differences, and institutional framework. The institutional framework is reflected in a variety of measures related to pricing of water. Let us consider the following examples.

- (1) Domestic consumption is higher when no measurement of the amount of water used is done.
- (2) Level of water use varies for households facing different type of pricing minimum charge, flat charge, versus block pricing system. Generally speaking, flat charge pricing provides the least incentives for conservation.
- (3) Under the block pricing system, domestic customers conserve more water under the increasing block pricing than either under decreasing block, or constant block pricing structures.³²

The climatic influence on water use is reflected in seasonal variations in the level of water use as well as in terms of reaction of the customers to longer term changes in weather and through that on the factors affecting water use. Griffin and Chang (1990) have shown that in Texas communities residential water users were twice more responsive to price change during the summer period relative to winter period.³³

The price elasticity for the summer months was -0.37 as against only -0.19 for the winter period.

33

³¹ The size of the family can be measured in several alternate ways. Some studies combine number of adults and children in the same measure, while others separate them as two variables. Conceptually, it is possible to make an aggregate measure of family size by using some water use conversion coefficients based on relative water use, as well by taking into account working versus non-working adults.

²⁴ The increasing block pricing refers to a system of pricing where successively higher quantities of water cost more. In contrast, under the constant block pricing, each block is priced the same, and under the decreasing block system, each successive block of water used costs less to the customer.

In a cross-sectional study of water use patterns, for example, regional climate was an important determinant of water use levels. Brockman, Kulshreshtha and O'Grady (1987) in a study of Saskatchewan communities have shown that a one percent increase in the net evapotranspiration³⁴ in sample, increased water use by 0.406 percent.³⁵ This would suggest that under a warmer climate, water use for residential purposes would increase significantly.

Effect of short term variability in climate has been studied by Kulshreshtha and Spriggs (1982), and by Cohen (1987). The study by Kulshreshtha and Spriggs (1982) was carried out to estimate the effects of drought on the municipal water use, and within that on the residential water use. For every increase in the net evaporation by one mm, the residential water use per capita per year increased by 180.5 m³. The elasticity coefficient for the net evaporation variable was estimated to be 0.43, which suggests, that for every one percent increase in it, increases the residential water use by about half a percent.

Cohen (1985) has shown that there is a significant correlation between potential evapotranspiration and municipal water withdrawals during the summer months. Cohen (1987) used this basis to estimate municipal water use under climate change in various municipalities in Ontario, Canada, and in Illinois, Michigan, Pennsylvania, and Ohio in the USA. Correlation coefficients between water withdrawals and potential evapotranspiration (PE) varied from 0.49 to 0.94. In addition, a model using net evapotranspiration (P - PE) was also used, which produced slightly lower correlation between climate and water withdrawals. Two climate change scenarios -- GISS (Goddard Institute for Space Studies), and GFDL (Geophysical Fluid Dynamics Laboratory) -- were used in the study to project municipal water use in the Great Lakes region for the months of May to September. The results suggested for an increase in the water use by 5.6 and 5.2 percent for the two scenarios, respectively. This translated into a 2.6 and 2.4 percent increase on an annual basis, under the assumption that the winter water use remains unaffected by climate change.

11.3.2 Industrial and Power Generation Water Use

The water use in industry provides cooling water for thermal power stations, besides being used in the processing of food products, and for general industrial use. The industrial water use varies considerably with the type of industry. Relatively speaking, primary metal, pulp and paper and agricultural processing industries (such as the slaughtering and meat processing operations) require more water to produce a similar value of final product. These figures should be used with caution, since even for the same type of industry, the water use levels will vary from region to region depending on the level of technology being

³⁴ This variable was defined as the evapotranspiration for the region less precipitation, and was measures in millimeters.

³⁵ Communities for which this variable was a significant determinant of water use levels were those where customers were billed on a quarterly basis.

employed. Therefore, the effect of climate change on the industrial water use would be very industry-specific, as well as region-specific.

Water use by industries may be affected by climate change in several ways. Major lines of influence are shown in Figure 11.2. The climate change would increase the requirements for cooling in manufacturing as well as in the thermal power generation plants. This change would alter the average water requirements for these industries. However, two types of indirect effects of climate change may also be present. One, climate change may alter the demand for some products. This type of change would alter the product mix produced in the region. To the extent different industries have different water requirements, and to the extent new demand is created for those industries that are more water intensive, total industrial water use would be different. The second influence may be through a second round effect of climate change. Here, change in the demand for certain goods due to climate change may alter the power requirements for the region, which may then affect the water use levels. In addition, climate change may also affect consumption of power itself. Under this condition there would be a need for more (less) power in the region. These two effects coupled together would affect the water use level for industrial uses.

Figure 11.2. Climate Change and Industrial Water Use

The climatic change, however, may increase the consumptive loss. This loss in streams and ponds can be computed in a similar way as the potential evaporation for irrigation demand. It is estimated that the consumptive loss increase due the average temperature rise of 4 °C can be approx 7%. If the temperature rise is accompanied by the relative humidity decrease (as indicated by regression analysis in semi-humid climate), the increase of consumptive loss increase may even double to approximately 15%. For the thermal power plants with

cooling towers where approximately 75% of the total heat is transferred to water evaporation, the consumptive loss will be reduced accordingly (5% and 11%, respectively).

The less reliable factor in the estimation of water requirements for power production under climate change is the total power requirements. In cooler climates, global warming may translate into lesser amount of power needed, whereas in the arid and semi-arid hotter climates, more power demands may emerge from the cooling needs of households and businesses. With increasing economic prosperity, the demand for power in many of these countries would increase over time. In addition, hydroelectric power may become more attractive as a means of both abating the greenhouse effect and adapting to increased power demands that might accompany it (Scott et al., 1990).

11.3.3 Agricultural Water Use

Among various uses of water, agricultural water use is the largest source. In fact, during the past 30 years (1950 to 1980) period, 60% of the net increase in total water use in the world was accounted by agricultural water use. Estimation of agricultural water under climate change is a complex subject. The complexities can be viewed in terms of three types of impacts that may occur, some of them, simultaneously:

- (1) Direct effect of the changed climate on the water requirements
- (2) Indirectly-Induced effect of climate change, and,
- (3) Policy-Induced effects of the climate change.

Each of these impacts is conceptualized in Figure 11.2. The direct effect of climate change on the agricultural water use can be seen in terms of two major interrelationships, each of which could have a major impact on the agricultural water use in a region. These are:

- (i) Change in the irrigation production function, and
- (ii) Change in the water requirements for stockwatering.

The first effect would basically be a biological one. It is possible that under a warmer climate, coupled with a higher occurrence of droughts in a region, more water would be required to produce the same quantity of cereals. In a similar vein, under a warming earth, livestock may also require more water to sustain themselves. Both of these may increase the total agricultural water requirements.

The indirectly-induced effects of climate change would be realized through a number of changes that will be produced by the climate change. These include:

- (i) Effect on the efficiency of the water delivery system,
- (ii) Effect on the dryland food production,
- (iii) Effect on demand for food and its composition, and
- (iv) Change in the livestock production function, particularly with respect to feedgrains consumption.

Figure 11.3. Agricultural Water Use under Climate Change

Under a warming climate scenario, more irrigation water may be required on account of decreased dryland production, increased requirements for forage and cereals for livestock, and on account of increased demand (domestic as well as international) for food in general. All these effects would lead to larger area under irrigation. The climate change would also have another indirect effect on the irrigation water requirements; this effect would be through decrease in the efficiency of the water delivery system.

The third round of effect -- policy-induced impact under climate change, is even more indirect. Here, the motivation for more irrigation may be imparted by the need for adoption of irrigation by producers. If dryland agriculture is affected to the point that irrigated production is more economically efficient, there may be more incentives for the farmers to increase the irrigated area. The final product of this type of change would be a larger agricultural water use in the region.

As a result of these three types of changes, the expected changes in climate and their consequent impacts will profoundly affect agricultural water use. However, precise results on many of these changes are still subject to empirical scrutiny. There is an urgent need to set these studies within a framework of water management, agriculture policy management, and economic analysis.

Under a changing climate, one of the most obvious changes in agricultural water use will come through increased crop requirements. However, this would not be the only reason for a change in the level of agricultural water use; there may be other contributing factors, as described below:

- (i) Relationship of Irrigation Water Demand to Meteorological Data: The impact of climate changes on water requirements is an important issue of water and irrigation systems planning. The change in crop yields due to climatic change depends on other factors such as the species, farm technology, but it mainly depends on the soil moisture. For optimal yield, soil moisture should not decrease below a critical value. This condition can be expressed as the water balance in the soil (see Seuna, 1977). Since many of these variables would be altered under the climate change scenario, the model has an obvious application to the situation of climate change.
- (ii) Model of Irrigation Water Requirements under Climate Change: The model of irrigation water requirements should be based on understanding the relationship between soil moisture (i.e., on the water balance in the soil of the root zone), potential evapotranspiration, and actual evapotranspiration. The model of climate-induced irrigation water requirements can be created by assuming that the present relation of temperature to other meteorological factors will be maintained under the changed climate, and that a relationship between these variables and temperature, based on a linear regression, is an adequate proxy for the future. In hydrologic analysis of watershed or in derivation of irrigation water requirements of large irrigation areas (i.e., 1000 ha or more), a more precise estimate is based on complementary responses of potential evapotranspiration to changes in water available for areal evapotranspiration.
- (iii) Impact of Precipitation Change: Some climatic change scenarios indicate that the annual total precipitation will not change significantly, but its distribution during the year may change, thereby affecting the precipitation available during the vegetation period. Some estimates have put this decrease at 20%. Furthermore, some hydrologists predict that the pattern of precipitation could also change and decrease further the effective precipitation³⁶.

³⁶ For instance, the changes of synoptical situation may be more abrupt (e.g., after a long period of drought a severe storm with high runoff might follow and a new period of drought might appear) resulting in lower effective precipitation.

- (iv) Evidence on Other Factors Affecting Agricultural Water Use: In addition to changing the irrigation water requirements, climate change may affect agricultural water use through the following changes, which are discussed below:
 - (a) Effect on Agriculturally Suitable Area
 - (b) Indirect Effects of Sea Level Rise,
 - (c) Effect on the dryland crop yields,
 - (d) Effect on Agricultural Pests and Diseases, and,
 - (e) Impact of Drought and other Extreme Events

According to the Second World Climate Conference (see Parry and Jiachen, 1991), increase in temperature can be expected to lengthen the growing season in areas where agricultural potential is currently limited by insufficient warmth, resulting in a poleward shift of thermal limits to agriculture. The major implication of this change would be an increased ability for cereal production for the region, which may indirectly change the need for irrigation to meet the gap between demand and supply.

Increased CO_2 in the atmosphere would lead to somewhat higher yields for certain crops. According to Cure and Acock (1986), this would lead to an increase in the rate of plant growth. However, crops such as wheat, rice, and soybeans would fair much better than maize, sorghum, millet, and sugarcane. The implications of such changes would be both in terms of global food security of many nations (limiting or opening opportunities for Canadian exports), as well as in terms of the land use.

The effect on the dryland agriculture should be viewed together with other changes (nonclimate change related) that are happening at the same time. Some studies have suggested that temperature increase may be associated with extending the range of some pests, which are currently being limited by temperature. In addition, there may be more occurrences of livestock diseases (EPA, 1989). This may translate into, under warmer climate at midlatitudes, an increase in the overwintering range and population density of some agricultural pests, while in cool temperate regions there will be more insect pests and diseases which are not present currently. These events would lead to decreased crop yields in some regions, as well a lowering of profitability from livestock operations.

With changing climate, the probability of extreme events, such as the droughts, storms, heat stress, and severe frosts, increases. Although crop yields exhibit a non-linear response to heat or cold stress, as suggested by Mearns, Katz and Schneider (1984), very little is known about such changes in the probabilities (Rind, Goldberg and Reudy, 1989).

The above noted impacts of the climatic variability would have serious implications for current food production, and through that for the future food security. However, the biggest unknown is the technological change, which may override any negative effects of climatic change. All these factors would have significant socio-economic implications for many countries.

11.3.4 Recreation, Navigation, and Ecosystem Water Use

The water related recreation represents an important function in the modern society. Its importance will grow with the increase in leisure time, through the need to satisfy basic functions of human life, i.e. rest, entertainment, personal development etc. Water quantity and quality requirements for water related recreation differ according to the type of recreation, such as direct or indirect contact with human body (Baumann, 1969). Various types of water related recreation and sports will be, in some way, influenced by the climate change. The increasing temperature will increase the number of days suitable for activities such as bathing and swimming, boating and sailing etc. This would result in overcrowding of existing facilities as well as in higher public demand for planning new recreational facilities. In some cases, it may lead to changed minimum flow requirements for rivers. In many cities, particularly those without any natural water-adjacent recreation areas, need for large recreational facilities may be overwhelming, which would lead to higher water use at the municipal level.

The evaluation of the recreation value of some reach of the river or of the lake has to take into account the fact that the environmental quality and the recreational use are closely connected. Both of these objectives can be expressed in terms of the alternative use in the multipurpose water resources system and can be reflected in the shadow prices (Cicchetti et al., 1972; and David, 1968).

The economic evaluation of the effect of the climatic changes on the recreational activities and ecosystems is relatively difficult, but possible. Using the Contingency Valuation methods, the willingness-to-pay³⁷ for recreational services can be estimated. These values can be used for planning of new recreational sites or bringing qualitative changes aesthetically pleasing to site users. One must be cognizant of the fact that the recreational use is a function of many socio-economic variables, like personal income, change in social behavior, availability of leisure time, and preference for water related sports, many of these may also be related to the climatic variability.

11.4 Climate Change, Water Quality, and Water Use

Climate change may also affect water quality in certain parts of the SSRB. This is an important ingredient in the determination of water use. If the quality of water goes below some critical level, and the cost of upgrading this quality increases, the demand for this water would likely approach to zero as well. Water quality impacts of climate change are dependent on society's response for quality management. Without such measures a number of impacts can be foreseen. For the rivers and streams, quality of water is generally defined in terms of concentration of pollutants at the time of critical low flow level. With the climate change, there may be a change in the stream flow, which is more important in terms of critical low flow. This will result in a decrease in the river and stream water

³⁷ Such willingness-to-pay studies have been carried out for the North American recreational sites. For a review of such studies see, Kulshreshtha (1991), and Gibbons (1986).

quality. If the climate change brings about a different seasonal distribution of precipitation, as suggested by Gleick (1987b), this may also result in deterioration of river water quality during the drier periods.

Climate warming would also create water quality problems in estuaries and bays similar to that in rivers and streams. According to Jacoby (1990, p. 314), the greenhouse-induced climate change will affect quality of water in lakes through three mechanisms: changes in throughput and volume, higher water temperature, and reduction in ice cover. The change in temperature will affect the rate of bacteriological activity and the amount of oxygen to support it. Problems of water quality would also emerge in coastal areas through saline water intrusion. Some of the groundwater may be particularly vulnerable.

Change in water quality has significant implications for all types of water uses. More significant will be the water use for human consumption, which has health implications. Change in the water temperature through a change in the atmospheric temperature may further enhance the occurrence of water-borne diseases (Nemec, 1988). Cost of water treatment would also be affected by the use of poor quality source water.

Tourism and recreation are particularly vulnerable to changes in the water quality. If the temperature of the stream increases, the dissolved oxygen content in the water may drop below the level necessary for some kind of fish survival and an ecological water quality accident may be the result (Edinger, Duttweiler and Geyer, 1968; O'Connor, 1967). The impact of the temperature rise on sport fishing may be negative, as it may decrease the dissolved oxygen content under the value necessary for fish ecology.

11.5 Non-Use Related Factors Affecting Value of Water

In addition to changes in the water use and its productivity under climate change, value of water may also be affected by other set of factors. Included here are two major factors: one, cost of developing new water supplies, and two, reducing water use through conservation measures or demand management measures. In addition, in-stream water needs may also affect the value of water (through its availability). These factors are discussed below.

11.5.1 Cost of Water Development

Value of water will certainly be determined by cost of developing new water sources when existing supplies dwindle. These costs are very site-specific. In relatively lower value uses, such as stockwatering, irrigation, and hydropower generation, cost of water may be an important determinant of its use, unless policies are designed in a manner that the users do not pay the full-cost of the new development. Frederick and Schwarz (1999) have reported costs if new water development according the level of water scarcity. These costs are shown in Table 11.1. The cost increases almost exponentially as the scarcity index for water in a given region increases.

Recycling municipal and industrial wastewater is assumed to be the lowest cost source of new supply. It is assumed that up to 10 percent of these uses can be recycled at an average cost of US\$400/acre-foot (C\$678 per dam³ in 2004 dollars). Only part of this recycled water would represent new supply, using 70 percent in California, recycling produces new supplies at US\$570/acre-foot (C\$966 per dam³). If supplies are still not in balance, it is assumed that an unlimited quantity of new water can be developed at US\$1,000/acre-feet (C\$1,695 per dam³).

Non-Irrigation Uses			
Scarcity Index ¹			
<80			
>80 and < 90			
>90 and < 100			
>100			

Table 11.1.	Cost of Developing Water for
	Non-Irrigation Uses

Source: Frederick and Schwarz (1999)

11.5.2 Cost of Water Conservation

For various water users, there exist alternatives to conserve water use and thus, to reduce the stress on water resources. Opportunities for such conservation are very industryspecific. For example, in irrigation, scheduling to deliver water when the plants can use it most effectively and switching to crops and varieties that require less water or provide higher returns per unit of water are such alternatives. Adoption of alternative technology in reducing water application rates (such as drip irrigation) is also an effective water conservation measures. Opportunities for curtailing consumptive use of irrigation water through conservation measures are small. Estimates by the USDA suggest that the maximum saving in consumptive use likely to be achieved through irrigation conservation measures is about five percent of the 1995 irrigation baseline (Frederick and Schwarz, 1999).

In power generation, dry tower cooling virtually eliminates both withdrawal and consumptive water uses in the production of thermoelectric power. But this system is about twice as expensive as wet tower cooling and it results in a loss of thermal efficiency. Taking these factors into account, reducing consumptive use through dry tower systems is assumed to cost US\$440/acre-feet (C\$746 per dam³).

The costs and opportunities for conserving domestic, industrial, and commercial water in the climate change scenarios depend on how much the region has already invested in conservation. For a region that conserved only five percent in the no-climate-change scenario, it is assumed that an additional five percent can be saved at an average cost of US\$110/af (US\$337/mg). And regions can go from 10 to 16 percent reductions at an average cost of US\$542/acre-feet(C\$920 per dam³)

11.5.3 Value of Change in Stream Flows

The benefits of increased flows and the costs of decreased flows are assumed to depend on the relation between mean stream flow and the desired³⁸ instream flow or the relationship between mean stream flow and critical³⁹ instream flows in each water resource region. The assumed benefits and costs of changes in stream flows are an average of all the estimated values for fish and wildlife habitat and recreation use. The estimated values are not available. Using data for the US, as shown in (Table 11.2), stream flows values may be as high as U\$597 per acre-feet in 1995 dollars (equivalent to C\$1,010 per dam3 in 2004 dollars). Much of this would depend on how scarcity category at a given location changes as a result of the projected changes in water use from 1995 to 2030.

Estimated Costs and Benefits of Stream flow Changes Table 11.2.

Water Scarcity	Value of water (1995 US\$)
Mean flow≥ desired flow	4/af (12/mg) in the East;
	21/af (64/mg) in the West
Desired flow≥ mean≥ critical flow	205/af (629/mg)
Mean flow≤ critical flow	597/af (1,832/mg)
Source: Frederick and Schwarz (1000)	

rederick and Schwarz (1

11.6 Implications of Climate-Induced Water Use

Future climate change would affect the socio-economic conditions facing many regions and sub-regions in the SSRB. Although each situation warrants an examination on its own merit, some generic implications of climate-induced water use can be drawn. Some of these implications would be relatively more obvious, while others, more diverse. In this section, major implications of such a change are outlined.

11.6.1 Increased Competition for Water

Climate change will worsen the competition for water in the SSRB. Competition for freshwater between cities and rural areas is intensifying in many parts of the basin. Evidence of such competition can be found in southwestern U.S.A., where increasing urban domestic water use has forced some municipalities to bid for water rights from the agricultural water users. The end result of these changes will be more disputes among water users within the same region. In some regions, there may arise a need for inter-regional transfers of water, which would demand a special handling in the wake of uncertainty created by the climate change.

³⁸ "Desired" instream flows are defined as the higher of the flow required to maintain fish and wildlife populations or navigation.

³⁹ "Critical" instream flow is defined as 50 percent of the "desired" flow.

11.6.2 Development of Information on Present Water Use Levels and Patterns

Collection of adequate and comprehensive information is essential for sound decisionmaking. If the society is to make such decisions in anticipation of the climate change, we need to have a better handle on the existing situation first. However, much of the past data collection process related to water resources has concentrated on the water supply aspects -- its hydrology, and to a more limited extent and only during more recent period, on water quality monitoring. Collection of data on water use levels and its pattern of use have not attracted the attention of many water management agencies in the Basin. This deficiency was recognized by the International Conference on Water and the Environment, held in Dublin (see WMO, 1992), that recommended that "...the public to have best feasible access to ...water use data and information for those concerned in, or affected by, that water and their likely developments and demands" (p.5).

11.6.3 Vulnerability of Regions to Water Availability

Climate-induced changes in availability of water coupled with changes in water use/demand may make some regions more vulnerable in a sustainable context (Nemec and Schaake, 1982, and Nemec, 1982). Depending upon the relative water supply and availability, a region may be surplus in water, or may face severe water shortages. Under climate change, when both water availability as well as its use is affected, some regions now facing surplus may become under water stress or even face water scarcity.

11.6.4 Socio-Economic Impacts

The various degrees of vulnerability of various countries to climate change would have significant socio-economic-political implications on the countries. Climate change would affect all sectors of the society. Some of these changes would be as a direct result of climate change. For example, Dudek (1989) has reported that in California, the net economic well-being produced from agricultural operations under climate change between 14-17%. Other economic impacts will be felt through the impact on agricultural production firms, through economic linkages. Extreme events, such as the drought or floods, would decrease the economic profitability of production in all sectors, but more so for the agricultural production. This may eventually affect the competitive position of one region to other, and may lead to inter-regional shifts in economic activity, followed by massive migration of people. The adjustments in regional pattern for agriculture in many countries could be triggered by the climate change and the agricultural and economic prospects at the farm, regional or state level can be affected.

The climate change, through adjustment in various types of water uses, would have other impacts that may be of high social significance. For example, the vulnerability of domestic water use to climatic change will be different in various parts of the Basin. In some parts, increased water requirements can be met through technological change, such as by building new water reservoirs or by reduction of leakage and conveyance losses through reconstruction of water supply network. In other locations, such activity may not be feasible.

In assessing the potential impact of future climate changes on human activities, the fundamental subject of concern is the adaptive capacity of social and economic systems. Society in the past has adopted to similar changes. As climate change modifies the human action, feedbacks will again occur as society adapts in a dynamic fashion (Warrick, 1989).

11.6.5 Integrated Water Management

The attitude of water management planners should be such so as to be aware of the forthcoming challenge posed by the climate change, and to project and plan water resources in an appropriate manner. Such planning should be adaptable, robust and resilient to withstand the possible future changes of climate. As demand for dependable water supplies increases and its supplies dwindle, the type of water resources development that would be needed under climate change will be different. Simple withdrawal of water from streams or rivers would be replaced by provision of water reservoirs to smooth out the irregularity in stream flow on one side, and inter-year variability in its use on the other. Measures will also have to be developed for proper management of groundwater resources. According to Cook (1976), the cycle of groundwater is often so long that the groundwater can be taken as a non-renewable resource; mining it at an increasing rate may leave future generations with water shortages. According to Williams (1989), possible water management responses under climate change may also include reallocation of water supply from less valuable irrigated agriculture to municipal uses, changes in agricultural methods, increasing incentives for integrated flood management, increasing incentives for watershed management, integrating ecosystem needs in water resources planning, and the need to redesigning the operation of the existing water projects. Kos (1986) has also suggested that in a multipurpose water resources system, a transfer among the objectives may also react positively to climate change induced impact, and, thus, may reduce the possible economic losses to minimum.

Most of the past assessment of climate change has concentrated on physical and biological aspects. The results of these studies need to be set within a framework of water management, agriculture, and economic analysis (Orlovsky, 1984). The adjustment in regional pattern for agriculture may also take place in response to climate change, impacts of which should be linked to more general approaches to developing optimal water management policies in the future (Skogerboe, 1982; and Heady et al., 1973).

The price of water due to reduction of water resources may increase and as the consequence of these components, the water demand may be reduced causing further socio-economic problems. This situation in water supply is complicated by the decreasing quality of water and the increasing need for water treatment. Under these conditions, water quality management may have to be given a top priority in water policy making. It may be cheaper to solve the problem before it happens than to wait until it has major impacts on the society.

Meo (1991) has distinguished three types of strategies for adapting to the potential climate change: no-action, stand-and-defend, and strategic-retreats strategies. If water management in the future is based on `no-action' strategies, the outcome of impacts would be as described here. The `stand-and-defend' strategies include structural and non-structural measures to counter the impact of climate change. The last set of strategies includes measures for adapting to climate change impacts while not directly countering them. A pertinent question is which of these strategies would make the most sense from water management point-of-view? Complications are brought about by the fact that the environmental and socio-economic systems are also closely interrelated at the local and regional level, as suggested by Kairiukstis et al. (1989), and such linkages should be considered in the development of the water management policies.

11.6.6 Demand Management

Under climate change, with the water supplies dwindling, and its use level increasing, there would be a need for a properly developed demand management system which can improve the efficiency of water use on one side, and reduce the need for massive investments in water supply infrastructure without bringing undue hardship on the users. The nature of this plan cannot be generic, since measures need to be evaluated on their own merits for a given situation.

Under the looming fear of global warming, demand management measures would have to be devised to ensure: (1) balancing the water use with water availability; (2) maintenance of acceptable quality of water; (3) management of water use during periods of Drought; (4) matching seasonal water availability with use, and (5) management of inter-year variability in supply through adjustments in water use levels. Each of these may require different strategies, and therefore, should be considered on a site-specific basis.

Water demand management is based on the premise that the behavior of the individual can be modified. Economic incentives or penalties can be provided to induce the desired behavior. However, one should note that economic instruments are not the only means by which individuals' behavior can be changed. Through communications with the users, one may also be able to persuade the users to alter their water use levels. Among various economic instruments, use of tariffs (price) for water use is the predominant one. Tariffs can be at a uniform rate, or at a block rate⁴⁰. Tariffs can also be devised on a seasonal basis to induce more water conservation during certain times of a year. However, before these tariffs can be effective, measurement of use of water is a very important prerequisite.

⁴⁰ Under the uniform rate tariffs, all water is charged the same. Under the block rate system, however, increasing quantities of water may cost more or less. The first system is called the increasing block rates, whereas the second one, decreasing block rates. Based on analysis of households in Saskatchewan under these three pricing structures, increasing block rate pricing is the most consistent with water conservation. For details, see Brockman, Kulshreshtha and O'Grady (1987).

Although management of withdrawal demand for water is obvious, under climate change in-situ water use management may be just as important. Since under a warmer climate, recreational activities are expected to increase, there may also be several environmental impacts. The overcrowded beaches decrease their environmental value and the value of recreation. Some recreation water uses, e.g. boating can be considered as part of the pollution in the system, e.g. for noise generation and escaping oil and gas. These sources of pollution may in some regions increase due to the increased number participants on water related recreation activities. All these negative environmental impacts can grow in number and frequency with the expected climatic change.

With dwindling water supplies, and an increased competition for its use, management of direct water use may not be sufficient. These measures may need to be supplemented by management of indirect water use. One of the relatively larger water users is electric power generation. Some of this wasted energy can be reduced by measures that increase the efficiency of this use through heat recovery and better insulation of houses. As the climatic change may increase the temperature, the summer cooling requirements may also grow. In the future, we may approach the situation where the seasonal demand for heating and cooling is balanced at a low level, to be supplied by other alternative means. Since in conventional heat production, the real efficiency is extremely low, one could make a strong case for the introduction of thermodynamic heating in some form, e.g., use of industrial waste heat, combination of generation of power and heat, and thermally driven heat pumps.

11.6.7 Inter-Regional Conflicts

Global climate change appears to be the most likely change that would affect international politics because of its wide scope and management (Gleick, 1989). However, such conflict may also arise within a basin. Situation will be worse for regions (such as Alberta and Saskatchewan) that share water resources, such as the lakes and rivers, and for those where a large part of the water supply is obtained through flow from other regions.

11.6.8 Legal and Institutional Development

Climate change would require changes in legal and administrative structure, both nationally as well as regionally. There would emerge, under climate change, a need in various regions to develop a clear and concise water management policy, and appropriate legal structures. Climate change may also bring about a major challenge for human resources development. To implement the new mandate of water management, training of water managers, researchers, and policy makers would be required. Strengthening of the training program to meet the need of many developing countries will be a mammoth effort.

Chapter 12

SUMMARY AND CONCLUSIONS

The South Saskatchewan River Basin (SSRB) is an area of high activity in the southern prairies. It is home to a large population, thriving industry, and strong agricultural development. Water is a vital requirement for the survival and success of life in the SSRB. In order to ensure efficient allocation of water now and in the future, it is important to understand the economic value of water. The aspects of water supply and demand both play a role in the valuation of water.

The major objectives of this study were as follows:

- 1) To estimate the value of water in major withdrawal uses within the South Saskatchewan River Basin (SSRB);
- 2) To review previous studies on value of water in other water uses in the SSRB; and,
- 3) to conceptualize the relationship between the value of water and climate change.

In this document, the values of water in some uses were estimated and the results of a review of values from other studies were reported. The withdrawal use values are summarized in Table 12.1, whereas the in-situ water use values in Table 12.2. Some water uses were not investigated for value due to a lack of available data.

In arid and semi-arid climates, irrigation is a vital necessity. Without such application of water, many agricultural areas of Southern Alberta and western Saskatchewan may not be economically viable. However, under a climate change scenario, it is predicted that water supply will diminish. Under a situation of shortages, water allocation may need to be changed. Water resource managers may require some knowledge of the consequences of their decision.

The value of water in irrigation and other agricultural uses were examined more, in part, because irrigation is the largest water user in the basin. Two types of values were estimated: one, marginal value of water, and two, average value of water. The first type of value measures the contribution made / costs incurred on the producers if a small quantity of water was not provided. The second type of value illustrates the contribution made by water allocation to the welfare of the regional society through producers. All values were estimated for the two provinces – Alberta and Saskatchewan separately. In the case of marginal value of water, analysis was further extended to various sub-basins within each of these provinces.

Furthermore, it was hypothesized that these value would not be uniform for the entire basin, and thus, a disaggregated approach was preferable. Results suggest that indeed value of water in irrigation is highly variable. In Alberta long-run value ranged from a low of \$26.15 per dam³ in the Red Deer River Sub-basin to \$38.60 per dam³ in the Oldman River Sub-basin. A partial explanation for the differences is the crop mixes in various sub-basins, and the water withdrawals. In Saskatchewan, value of water in irrigation was found to be different for the two regions within the SSRB. In the southwest portion of the basin, where irrigation is practiced on a small-plot basis, water was valued at \$23.09 per dam³, whereas in the Lake Diefenbaker Development Area the long-run value was \$201.82 per dam³. This value is significantly higher than that in Alberta by almost a margin of six times. This is, in part, explained by the differences in the water use per unit of land in the two regions, and also by the proportion of seed potatoes in the crop mix in Saskatchewan. Irrigation water use also generates protection from droughts. This estimated value ranged from \$8 to \$29 per dam³ for various sub-basins. In addition to irrigation, agricultural water use includes livestock water use. This value was estimated to be lower than that for irrigation.

Sub-Basin	Short-run Value per Dam ³	Long-run Value per Dam ³	
I	rrigation		
	Alberta Portion of SSRB		
Oldman	\$78.13	\$38.60	
Bow	\$48.01	\$26.68	
Red Deer	\$52.24	\$26.15	
SSRB-AB	\$72.64	\$30.41	
	Saskatchewan Portion of the SSRB		
LDDA	\$272.75	\$201.82	
SWDA	\$36.22	\$23.09	
Average SSRB- Saskatchewan	\$235.81	\$173.91	
Nor	-Irrigation		
Drought Proofing Saskatchewan		\$7.68 to \$11.05	
Drought Proofing Alberta		\$11.05 to \$28.87	
Livestock (this Study)		\$9.22	
Livestock (Bruneau 2004)	1	\$46,330	
Non-Ag	ricultural Uses		
Municipal – Residential	Bruneau (2004)	\$1,270 to \$2,040	
Municipal – Commercial and Industrial	Bruneau (2004)	\$1,410 to \$2,170	
Industrial	Bruneau (2004)	\$80 to \$49,000	
Mining (Saskatchewan potash mining)	Kulshreshtha et al. (1988)	\$347.47	
Thermal Power Generation	Bruneau (2004)	\$1.12 to \$627	

Table 12.1. Value of Water in Agricultural Uses, SSRB, 2004

Type of Use	Author	Location of Study	Value per dam ³ in 2004 Canadian Dollars
Hydroelectric Power Generation	Bruneau (2004)	SSRB	\$0.11 to \$0.24
	Kulshreshtha et al. (1988)	Saskatchewan Short-run Base Short-run Peak Long-run	\$1.57 \$15.31 \$0.27
Recreation	Kulshreshtha et al. (1988)	Saskatchewan	\$2.90 to \$1,139.42
Waste Assimilation	Kulshreshtha and Gillies (1991)	Saskatoon (South Saskatchewan River)	\$15.92 to \$21.71 million *

Table 12.2. Value of Water in Non-Agricultural In-Situ Water Uses

* Total value for waste assimilation. Value per unit of water not estimated.

Relatively lower marginal values were estimated for traditional crops such as cereals and oilseeds. Various sub-basins had a very similar marginal value of water, since cost of production budgets for these crops were based on an average for the province. Differences between the two provinces in the distribution of marginal value of water were noted. Although both provinces started with the same higher marginal value of water, it declined sharply in Saskatchewan for most of the irrigated area. The most likely cause of these differences was the differences in crop mix. One should note that these values are direct crop production based values. Forages are utilized on farm for other cattle enterprises. A true marginal value of water should take these linkages into account. However, this was not done in this study.

Non-use values were based on a review of literature. A general conclusion is that there are very few comparable values of such uses that can be applied to the SSRB.

As pertinent as it is to know the value of water in its different uses in the SSRB, it is also very important to estimate how that value will rise or fall in response to environmental changes. Climate change is one such environmental factor that is predicted to have an impact on the value of water. As global temperatures rise, the supply and demand of freshwater in the SSRB will be affected. Thus, the value of water will be altered as well. Estimates of the predicted value of water are essential in preparation for the uncertain and perhaps life-altering consequences resulting from climate change. However, based on a review of available study, no particular conclusions could be drawn as to how this value of water would change under climate change.

This study is based on available literature and data, and as a result has suffered through many limitations. The most important ones of these include:

- 1. Data on water use for irrigation is poor, particularly for the SWDA and LDDA regions of Saskatchewan.
- 2. For neither Alberta nor Saskatchewan data could be found on the actual water used for various crops. Although it is recognized that this may change from year to year due to climatic variability, an attempt should be made for collecting this information.
- 3. Data on actual area irrigated is also a major stumbling block in the estimation of value of water. A lack of knowledge of irrigation scale affects the marginal values as well as average value of water.
- 4. Cost of production budget data are poor on three counts: one, such budgets are not available for some regions such as SWDA; two, separate cost of production budgets are not available for various sub-basins of the SSRB; and, three, comparability of data from one province to the other is questionable.
- 5. There is a need to assess the value of water in alternative uses by location since value is highly variable from location to location.
- 6. Assessment of value of water quality is a relatively unstudied area of research. Although most studies concentrate on quantity of water, water is not a homogenous entity. It must be distinguished by quality of water for any meaningful analysis of scarcity and trade-offs.
- 7. Impact of climate change on value of water remains to be a mystery. Further attention to this aspect is required.

It is hoped that future studies in this area would make an attempt to improve on these major limitations for estimation of water value in the South Saskatchewan River Basin of Alberta and Saskatchewan.

REFERENCES

- AAFRD Alberta Agriculture, Food and Rural Development. 2002. Cropping Alternatives of Production Costs and Returns: Dark Brown Soil Zones. Accessed on August 31, 2005 at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/econ5425.
- AAFRD Alberta Agriculture, Food and Rural Development. 2003. Crops. Accessed in March 2005 at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/sdd5291.
- AAFRD Alberta Agriculture, Food and Rural Development. 2003b. Crops grown. Accessed in March 2005 at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/irr8755?opendocument
- AAFRD Alberta Agriculture, Food and Rural Development. 2003c. Crops within the Aetna Irrigation Districts. Accessed on March 2005 at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/irr8756?opendocument
- AAFRD Alberta Agriculture, Food and Rural Development. 2005. Economic, Productive & Financial Benchmarks for Alberta Cow/Calf Operations. Accessed on August 31, 2005 at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/econ8479.
- Acton, D.F, G.F. Padbury and C.T. Stushnoff. 1998. The Ecoregions of Saskatchewan. Saskatchewan Environment and Resource Management, Canadian Plains Research Centre. Regina, Saskatchewan: University of Regina.
- ADI Nolan Davis and Gardner Pinfold Consulting Economists Limited. 1996. Assessment of the Economic Value of Water and its Contribution to the Economy of Newfoundland.
- Adamowicz, W. L. and W. E. Phillips. 1983. A comparison of extra market benefit evaluation techniques. Canadian Journal of Agricultural Economics. 31: 410-412.
- Agriculture and Agri-Food Canada. 2003. Shelterbelts for dugouts. Accessed on May 16, 2003 at: http://www.agr.gc.ca/pfra/shelterbelt/shbpub58.htm.
- Agriculture and Agri-Food Canada. 2000. The Health of Our Water: Toward Sustainable Agriculture in Canada. Research Branch, Agriculture and Agri-Food Canada.
- Agriculture and Agri-Food Canada– Prairie Farm Rehabilitation Administration. (AAFC-PFRA) 2003. Analysis of Agricultural Water Supply Issues – Prairie Provinces. National Water Supply Expansion Program, Edmonton, Alberta.
- Aiken, R. 1985. Public Benefits of Environmental Protection in Colorado. Masters Thesis. Colorado State University. EVRI Number: 97327-213428.

- Alberta Community Development. 2004. Visitation Statistics: 2002/2003 Fiscal Year. Parks and Protected Areas Division. Policy and Program Coordination Branch.
- Alberta Environment. 2003. Water for Life- Alberta's Strategy for Sustainability. Alberta Environment, Edmonton, Alberta.
- Alberta Government. 2004. Climate Change and Water in Alberta. Accessed September 21, 2005 at: http://www3.gov.ab.ca/env/water/GWSW/quantity/learn/Influence/IF3_climchange.cfm.
- Albritton, D.L., L.G.M. Filho (and 19 other lead authors). 2001. Technical Summary. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. United Kingdom and New York, NY, USA: Cambridge University Press, Cambridge.
- Armstrong, R., E. Pietroniro and T. Rolfe. 2004. Water Use in the South Saskatchewan River Basin. Unpublished Paper at the Prairie Adaptation Research Collaborative website. Saskatoon, Saskatchewan, University of Saskatchewan Accessed August 2, 2005 at: http://www.parc.ca/ssrb/index.html.
- Armstrong, R. 2005. Personal communications. March 2005.
- Athwal, R.K. 1994. Costs and Benefits of Improving Water Quality by Composting Livestock Wastes: A contingent valuation approach. M.Sc. Thesis. University of British Columbia.
- Barbier, E.B., M. Acerman and D. Knowler. 1997. Economic Valuation of Wetlands: A Guide for Policy Makers and Planners. Gland, Switzerland: Ramsar Convention Bureau.
- Baumann, D.D. 1969. Perception and Public Policy in the Recreational Use of Domestic Water Supply Reservoirs. *Water Resour. Res.* 5 (3): 543-554.
- Bell, Brian. 2005. Personal communication. Senior Hydrologic Engineer, Environment team, Agriculture and Agri-Food Canada, Calgary, Alberta. (August 29, 2005).
- Brandes, O. M. and K. Ferguson. 2004. Flushing the Future? Examining Urban Water Use in Canada. Polis Project on Ecological Governance. Victoria, BC, University of Victoria.
- Brebenstein, C.R. and B.C. Field. 1979. Substituting for Water Inputs in U.S. Manufacturing. Water Resources Research. 15(2): 228-32.
- Brockman, J.L., S. N. Kulshreshtha and K. L. O'Grady. 1987. *Municipal Water Use*. Moose Jaw, Saskatchewan: Saskatchewan Water Corporation.

- Brox, J.A., R.C. Kumar and K.R. Stollery. 1996. Willingness to Pay for Water Quality and Supply Enhancements in the Grand River Watershed. *Canadian Water Resources Journal.* 21. (3): 275-288.
- Bruce, J.P., H. Martin and P. Colucci. 2003. Climate Change Impacts on Boundary and Transboundary Water Management. A Climate Change Action Fund Project. Ottawa: Natural Resource Canada.
- Bruneau, J. 2004. Economic Value of Water in the SSRB. South Saskatchewan River Basin Project. Saskatoon, Saskatchewan: University of Saskatchewan.
- Bruneau, J. 2004. Climate change and water in the South Saskatchewan River basin: economic value of water. Unpublished Paper at the Prairie Adaptation Research Collaborative Website. Saskatoon, Saskatchewan, University of Saskatchewan: November, 2004. Accessed August 2, 2005 at: <u>http://www.parc.ca/ssrb/index.html</u>.
- Byrne, J.M., R. Barendregt and D. Schaffer. 1989. Assessing Potential Climate Change Impacts on Water Supply and Demand in Southern Alberta. Canadian Water Resources Journal. 14. (4): 5-15.
- Canadian Council of Ecological Areas. 2004. Ecozones of Canada. Canadian Council of Ecological Areas, Environment Canada. Accessed January 2006 at: http://www.ccea.org/ecozones/index.html.
- Carson, R.T. and R.C. Mitchell. 1993. The Value of Clean Water: The Public's Willingness to Pay for Boatable, Fishable, and Swimmable Quality Water. Water Resources Research. 29. (7): 2445-2454.
- Chinn, W. 2005. Personal communication. Irrigation branch, Alberta Agriculture, Food and Rural Development. (March 23, 2005).
- Cicchetti, C.J., V.K. Smith, J.L. Knetsch J.L. and R.A. Patton. 1972. Recreation Benefit Estimation and Forecasting. *Water Resour. Res.* 8 (4): 840-850.
- Cline, W.R. 1992. The Economics of Global Warming. Washington, DC: Institute for International Economics.
- Cohen, S.J. 1987. Sensitivity of Water Resources in the Great Lakes Region to Changes in Temperature, Precipitation, Humidity and Wind Speed. The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources. International Association of Hydrological Sciences (IAHS) Publication No. 168. Wallingford, Oxfordshire, UK: IAHS Press.
- Cohen, S., K. Miller (and eight other lead authors). 2001. North America. Climate Change 2001: Impacts and Adaptation. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change [McCarthy, J.J., O.F.

Canziani, N.A. Leary, D.J. Dokken, and K.S. White (eds.)]. Cambridge, United Kingdom, Cambridge University Press, and New York, NY, USA.

- Cook E. 1976. Limits to Exploitance of Nonrenewable Resources. Economics, Ecology, Ethics. Daly, H.E. (ed.), San Francisco: W.H.Freeman & Co. pp. 82-85.
- Cure, J. D., and B. Acock. 1986. Crop Response to Carbon Dioxide Doubling: A Literature Survey. Agricultural and Forest Meteorology. 38: 127-145.
- De Rooy, J. 1970. The industrial Demand for Water Resources: An Economic Analysis. Ann Arbor: Michigan: University Microfilms.
- Derek Murray Consulting Associates. 2004. Economic and Social Impact Assessment of Saskatchewan's Provincial Parks. Report Prepared for Saskatchewan Environment. Regina, Saskatchewan.
- Dracup, J.A. and D.R. Kendall. 1990. Floods and droughts. Climate Change and U.S. Water Resources. Waggoner, P.E. (editor). Report on the AAAS Panel on Climatic Variability, Climate Change and the Planning and Management of U.S. Water Resources. New York, NY: John Wiley and Sons.
- Dudek, D. J. 1989. Potential Climate Change Effects on Irrigated Agriculture in California. Coping with Climate Change. J. C. Topping, Jr. (ed.) Washington, D.C.: The Climate Institute. 1989.
- Dunford, R.W. and J.A. Murdock. 1997. Assessing Groundwater Damages from Hazardous-Substance Releases. Water Resources Update. Braden, John B. (editor). 9: 25-33.
- Dworkin, D.M. 1975. Water Reuse: A Flexible and Efficient Management Alternative for Municipal Water Supply. *Water Resour. Res.* 11(5): 607-615.
- Dybvig, W. and S. N. Kulshreshtha. 1989. Water Use and Value Study: A Summary Report. Moose Jaw, Saskatchewan: Saskatchewan Water Corporation.
- Edinger, J.E., D.W. Duttweiler and J.C. Geyer. 1968. The Response of Water Temperatures to Meteorological Conditions. *Water Resour. Res.* 4(5): 1137-1143.
- Environment Canada. 1997. Responding to Global Climate Change in the Prairies. Canada Country Study, Adaptation and Impacts Section, Atmospheric Environment Branch, Toronto.
- Environment Canada. 2000. The Importance of Nature to Canadians: The Economic Significance of Nature-Related Activities. Ottawa.
- Environment Canada and Statistics Canada. 2002. Monitoring the Value of Natural Capital. Ottawa. September.

- Environment Canada. 2004. Threats to Water Availability in Canada. National Water Resource Institute. Burlington, Ontario.
- Environment Canada. 2005. Groundwater. The Freshwater Website. Accessed March 22, 2006 at: http://www.ec.gc.ca/water/en/nature/grdwtr/e_gdwtr.htm.
- Fraas, A.G. and V.G. Manley. 1984. Municipal Wastewater Treatment Cost. Journal of Environmental Economics and Management. 11. (1): 28-39.
- Frederick, K.D. 1993. Climatic Change Impacts on Water Resources and Possible Responses in the MINK Region. *Climatic Change*. 24: 83-115.
- Frederick, K.D. and D.C. Major. 1997. Climate Change and Water Resources. Climatic Changes. 37: 7-23.
- Frederick, K.D., T. VandenBerg and J. Hanson. 1996. Resources for the Future. Economic Values of Freshwater in the United States. Washington, D.C.
- Frederick, K.D. and G.E. Schwarz. 1999. Socioeconomic Impacts of Climate Change on US Water Supplies. Journal of the American Water Resources Association. 35(6): 1563-1581.
- Gabert, G.M. 1986. Alberta Groundwater Observation-Well Network. Alberta Research Council, Terrain Sciences Department, Earth Sciences Report, 86(1): 40pp.
- Gabor, T.S., H. Murkin, P. Curry, M. Hill, D. Chekay and M. Anand. 2001. Beyond the Pipe-The Importance of Wetlands and Upland Conservation Practices in Watershed Management: Functions and Values for Water Quality and Quantity. Oak Hammock Marsh, MB: Ducks Unlimited Canada, Institute for Wetland and Waterfowl Research.
- Gibbons, Dianna C. 1986. Resources for the Future. The Economic Value of Water. Washington D.C.
- Gleick, P.H. 1987a. The Development and Testing of a Water Balance Model for Climate Impact Assessment: Modeling the Sacramento Basin. *Water Resources Research*. 23: 1049-61.
- Gleick, P. H. 1987b. Regional Hydrologic Consequences of Increases in Atmospheric CO₂ and Other Trace Gases. *Climate Change*. 10: 137-161.
- Gleick, P. H. 1989. Climate Change and International Politics: Problems Facing Developing Countries. Ambio. 18(6): 333-339.
- Gleick, P. H. 1993. Water in Crisis: A Guide to the World's Fresh Water Resources. New York: Oxford University Press.

- Government of Alberta. 2004. Alberta Energy- Mining in Alberta. Accessed March 22, 2006 at: http://www.energy.gov.ab.ca/2867.asp.
- Government of Alberta. 2005. *Municipal Affairs*. Accessed March 22, 2006 at: http://municipalaffairs.gov.ab.ca/ms_TypesMunicipalitiesAlberta.htm.
- Government of Canada. 2004a. Climate Change Impacts and Adaptations: A Canadian Perspective – Research Directions. Accessed September 26, 2005 at: http://adaptation.nrcan.gc.ca/perspective/table4.
- Government of Canada. 2004b. What is Climate Change? Accessed September 29, 2005 at: http://www.climatechange.gc.ca/english/climate change/.
- Government of Saskatchewan. 2005. Mineral Resources of Saskatchewan. Saskatchewan Industry and Resources. Accessed January 2006 at: <u>http://www.ir.gov.sk.ca/Default.aspx?DN=3541,3538,3385,2936,Documents</u>.
- Government of Saskatchewan. 2004. Government Relations-Glossary. Accessed March 22, 2006 at: http://www.municipal.gov.sk.ca/mrd/glossary.shtml.
- Gray, S.L. and R.A. Young. 1974. The Economic Value of Water for Waste Dilution. Journal of the Water Pollution Control Federation. 46(7): 1653-1662.
- Greenley, D.A., R.G. Walsh and R.A. Young. 1981. Option Value: Empirical Evidence from a Case Study of Recreation and Water Quality. The Quarterly Journal of Economics. 96. (4): 657-674.
- Griffin, R.C. and C. Chang. 1990. Pretest Analysis of Water Demand in Thirty Communities. Water Resources Research. 26(10): 2251-2255.
- Hauser, A. and G. van Kooten. 1993. Review of Improving Water Quality in the Abbotsford Aquifer: An Application of Contingent Valuation Method. Ottawa, Ontario: Environment Canada.
- Heady, E.O., H.C. Madsen, K.J. Nicol, and S.H. Hargrove. 1973. National and International Models of Water Demand, Land Use, and Agricultural Policies. Water Resour. Res. 9(4): 777-791.
- Heikkila, R., P. Woloshyn, L. Bauer, W. Chinn, D. Kaliel and R. Breitkreuz. 2002. South Saskatchewan River Basin: Irrigation in the 21st Century. Volume 5: Economic Opportunities and Impacts. Alberta Irrigation Projects Association. Lethbridge, Alberta.
- Henderson, T.A. 2000. Development of Freshwater Wetlands and the Effects on Property Values. American Water Resources Association. August: 179-184.

- Hurd, B., M. Callaway, J.B. Smith and P. Krishen. 1988. The Impact of Climate Change on the US Economy. Economic effects of climate change on US water resources. In R. Mendelsohn and J. E. Neumann (eds.), Cambridge: Cambridge University Press. 133-177.
- ICDC Irrigation Crop Diversification Corporation. 2004a. Irrigation Kicks out \$500/acre, Dryland \$90. Irrigation Crop Diversification Corporation. Outlook, Saskatchewan.
- ICDC Irrigation Crop Diversification Corporation. 2004b. Irrigation Economics and Agronomics. Irrigation Crop Diversification Corporation. Outlook, Saskatchewan.
- Jacoby, H. D. 1990. "Water Quality". In P. E. Waggoner (ed.). Climate Change and U. S. Water Resources. New York: John Wiley and Sons.
- Jordan, J. L. and A. Elnagheeb. 1993. Willingness to pay for Improvements in Drinking Water Quality. Water Resources Research. 29(2): 237-245.
- Just, R. E., D. Hueth and A. Schmitz. 1982. Applied Welfare Economics and Public Policy. Englewood Cliffs, NJ: Prentice-Hall, Inc.
- Kairiukstis, L. 1989. Ecological Sustainability of Regional Development. In L. Kairiukstis, A. Buracas, and A. Straszak (eds.). Ecological Sustainability of Regional Development: Background to the Problem. Laxenburg, Austria: International Institute for Applied Systems Analysis.
- Kos, Z. 1986. Design of Water Management Systems. General Report. Seminar on Water Management Systems UN ECE. Bratislava.
- Kulshreshtha, S.N. and J.A. Gillies, 1993. The Economic Value of the South Saskatchewan River to the City of Saskatoon: II Estimation of Recreational Use Value. Canadian Water Resources Journal. 18(4): 369-384.
- Kulshreshtha, S. N. and J. D. Spriggs. 1982. Water Use in Saskatchewan: Present and Future Levels. Saskatchewan Drought Study Element No. 11, Regina: Prairie Farm Rehabilitation Administration.
- Kulshreshtha, S. N. and K.D. Russell. 1995. Saskatchewan Irrigation Impact Analysis. Prepared for Saskatchewan Water Corporation. Moose Jaw, Saskatchewan.
- Kulshreshtha, S.N. 1991. Estimation of Value of Water for Water-Based Recreation in Saskatchewan. Canadian Water Resources Journal. 16(3): 1-16.
- Kulshreshtha, S.N. 1992. Economic Value of groundwater in the Assiniboine-Delta Aquifer in Manitoba. Prepared for Inland Waters Directorate. Ottawa: Environment Canada.

- Kulshreshtha, S.N., D. Sobool and C.W. Grant. 2005. Considerations Involved in the Specification of Water Use in the Canadian Regional Agricultural Model. Saskatoon, Saskatchewan: Department of Agricultural Economics, University of Saskatchewan.
- Kulshreshtha, S.N., J.L. Brockman, K. O'Grady and S. Miller. 1988. Water Use and Value Study Report 3. Current Water Use Levels in Saskatchewan. Moose Jaw: Saskatchewan Water Cooperation.
- Kulshreshtha, S.N., C.W. Grant, R. Marleau and E. Guenther. 2005a. Canadian Droughts of 2001 and 2002: Climatology, Impacts and Adaptations. *Methodology for Economic Impact Estimation*. Agriculture Canada.
- Kulshreshtha, S.N., E. Guenther and R. Marleau. 2005b. Canadian Droughts of 2001 and 2002: Climatology, Impacts and Adaptations. *Economic Implications of Reduced Water Supply in Western Canada*. Agriculture Canada.
- Kulshreshtha, S.N. and R. Marleau. 2005. "Economic Impacts of Livestock Production in Western Canada". SRC Publication No. 11602-13E03. In E. Wheaton, S. Kulshreshtha and V. Wittrock (eds.), 2005. Canadian Droughts of 2001 and 2002: Climatology, Impacts and Adaptations. Volume II. SRC Publication No. 11602-1E03. Saskatoon: Saskatchewan Research Council.
- Kulshreshtha, S.N. and W. Thompson. 2004. South Saskatchewan River Basin Input-Output, Employment and Water Use Model: Technical Documentation. South Saskatchewan River Basin Project. Saskatoon, Saskatchewan: University of Saskatchewan.
- Laing, R.D. 2002. Report of the Commission of Inquiry into matters relating to the safety of the public drinking water in the city of North Battleford, Saskatchewan. Regina.
- Lang, John. (Undated). Summary of Water Quality Economic Evaluation for Braddock Run. Washington, DC: National Resources Conservation Services (NRCS).
- Lemmen, D.S. and F. Warren (eds.). 2004. Climate Change Impacts and Adaptation: A Canadian Perspective. Natural Resources Canada: Ottawa.
- Lettenmaier, D.P., K.L. Brettman, L.W. Vail, S.B. Yabusaki and M.J. Scott. 1992. Sensitivity of Pacific Northwest water resources to global warming. *The Northwest Environmental Journal*. 8: 265-283.
- Lettenmaier, D.P. and D.P. Sheer. 1991. Climatic sensitivity of California water resources. Journal of Water Resources Planning and Management. 117: 108-125.
- Linsley, J. 2005a. Personal communication. Saskatchewan Agriculture Food and Rural Revitalization. (March 11, 2005).

- Linsley, J. 2005b. Personal communication. Saskatchewan Agriculture Food and Rural Revitalization. (September 2005).
- Livernois, J. 2002. The Economic Costs of the Walkerton Water Crisis. The Walkerton Inquiry Commissioned Paper Number 14. Toronto.
- Maathuis, H. and G. van der Kamp. 1986. Groundwater observation-well network in Saskatchewan, Canada. In proceedings of Canadian Hydrology Symposium No 16, National Research Council Canada, NRCC No. 25514. pp. 565-581.
- Marshall, A. 1930. Principles of Economics. London: MacMillan.
- Marv Anderson and Associates. 1980. Drought adjustment patterns: study element 4. In. Canada Saskatchewan Interim Agreement on Water Development for Regional Economic Expansion and Drought Proofing.
- Mearns, L. O., R. W. Katz, and S. H. Schneider. 1984. Extreme High Temperature Events: Changes in their Probabilities with Changes in Mean Temperatures. *Journal of Climatic* and Applied Meteorology. 23: 1601-13.
- Meo, M. 1991. Policy-oriented Climate Impact Assessment -- The Tennessee Valley Authority and Apalachicola Bay. *Global Environmental Change*. 1(2): 124-138.
- Muller, A. 1985. The Socioeconomic Value of Water in Canada. Inquiry on Federal Water Policy. Research Paper Number 5. Ottawa.
- Natural Resources Canada. 2002. Climate Change Impacts and Adaptation: A Canadian Perspective. Ottawa, Ontario.
- Nemec, J. 1989. Implications of a Changing Atmosphere on Water Resources. World Meteorological Organization, The Changing Atmosphere: Implications for Global Security. Conference Proceedings.
- Nemec, J. and J. Schaake. 1982. Sensitivity of Water Resource Systems to Climate Variation. Hydrological Sciences Journal. 27: 327-348.
- Nielson, D.L. 2003. Consideration of Climate Change in Electricity Demand and Supply Planning in Saskatchewan. Victoria, British Columbia, Royal Roads University.
- Nyrfa, W. N. and B. Harron. 2005. Agriculture and Agri-food Canada. Prairie Farm Rehabilitation Administration. Assessment of climate change on the agricultural resources on the Canadian prairies. Regina, Saskatchewan. Accessed on June 5, 2005 at: http://www.parc.ca/research_pub_agriculture.htm.
- O'Connor, D. J. 1967. The Temporal and Spatial Distribution of Dissolved Oxygen in Streams. Water Resour. Res. 3(1): 65-79.

- O'Grady, K., J.L. Brockman and S. N. Kulshreshtha. 1987. Water Use and Value Study Report 9. *The Value of Water Based Recreation in Saskatchewan*. Moose Jaw, Saskatchewan: Saskatchewan Water Corporation.
- O'Grady, K., J.L. Brockman, and S. N. Kulshreshtha. 1986. Report prepared for the Canada-Saskatchewan South Saskatchewan River Basin Study. South Saskatchewan River Basin Recreation Survey: Data Collection and Data Base Development.
- Ofosuhene, M. 2003. Saskatchewan River Basin-Wide Survey of Residents' Attitude Towards Water Resources and the Environment. Saskatoon: Community – University Institute for Social Research, University of Saskatchewan.
- Orlovsky, S. A. and P. E. V. van Walsum. 1984. Water Policies in Regions with Intense Agriculture. Laxenburg, Austria: IIASA, WP-84-40.
- PARC-Prairie Adaptation Research Collaborative. 2005. Climate Change and Water in the South Saskatchewan River Basin. Accessed September 26, 2005 at: http://www.parc.ca/ssrb/.
- Parkes, J. G. M. 1974. "User Response to Water Quality and Water-Based Recreation in the Qu'Appelle Valley, Saskatchewan", Chapter 6 in F. M. Leversedge (ed.). Priorities in Water Management. Victoria: University of Victoria.
- Parry, M. and Z. Jiachen. 1991. Climate Change: Science, Impacts and Policy. *The Potential Effect* of Climate Changes on Agriculture. J. Jager and H. L. Ferguson (eds.). New York: Cambridge University Press.
- Partners for the South Saskatchewan River Basin (PARC). 2005. The River Current. Spring edition.
- PFRA-Prairie Farm Rehabilitation Administration. 2005. Shallow Buried Pipelines for Summer Pasture Livestock Watering. Accessed August 31, 2005 at: http://www.agr.gc.ca/pfra/water/pipespsh_e.htm.
- Raucher, R.L. 1986. The Benefits and Costs of Policies Related to Groundwater Contamination. Land Economics. 62 (1): 33-45.
- Rind, D., R. Goldberg, and R. Reudy. 1990. Changes in Climate Variability in the 21st Century". *Climate Change*. (14): 5-37.
- Renzetti, S. 1986. Industrial Water Demand in British Columbia. Vancouver: Environment Canada.
- Revelle, R.R. and P.E. Waggoner. 1983. Effects of Carbon Dioxide-Induced Climate Change on Water Supplies in the Western United States. Changing Climate: Report of the Carbon Dioxide assessment committee. Washington, DC: National Academy Press.
- SAFRR-Saskatchewan Agriculture, Food and Rural Revitalization. 2003a. Agricultural Statistics. Saskatchewan Agriculture Food and Rural Revitalization. Policy Branch. Regina, Saskatchewan.
- SAFRR-Saskatchewan Agriculture, Food and Rural Revitalization. 2003b. *Livestock StatFact*. Saskatchewan Agriculture, Food and Rural Revitalization, Regina, Saskatchewan.
- SAFRR-Saskatchewan Agriculture, Food and Rural Revitalization. 2004. Crop Planning Guidelines. Saskatchewan Agriculture Food and Rural Revitalization. Accessed at: http://www.agr.gov.sk.ca/DOCS/Econ_Farm_Man/Production/Cereals/ cropplanguide.asp?firstPick=Economics%20and%20Farm%20Management&secondpick =Production%20Economics&thirdpick=Cereals_Oilseeds_Pulses.
- SAFRR-Saskatchewan Agriculture, Food and Rural Revitalization. 2005. Crop Yields. Accessed on August 30, 2005 at: <u>http://www.agr.gov.sk.ca/apps/rm_vields/default.asp?firstpick=Crop%20Yields%20by%</u> 20RM.
- Salvano, E., A.N. Rousseau, G. Debailleul, J-P. Villeneuve. 2004. An Environmental Benefit/On-farm Cost Analysis Case Study of Implementing Nutrient Management in an Agricultural Watershed. Unpublished Manuscript.
- Saskatchewan Environment. 2003. Saskatchewan Parks Summer Visitation and Outdoor Recreation Statistical Report.
- Saskatchewan Environment. 2004. Saskatchewan Parks Summer Visitation and Outdoor Recreation Statistical Report.
- SaskPower. 2005. Third Quarter Report 2005. Accessed March 15, 2006 at : http://www.saskpower.com/aboutus/corpinfo/quarterly/SPAR_2005_Q3.pdf.
- Schaake, J. C. 1990. "From Climate to Flow", in P. Waggoner (ed.). Climate Change and U. S. Water Resources. New York: John Wiley and Sons.
- Scott, M. J., N. J. Rosenberg, J. A. Edmonds, R. M. Cushman, R. F. Darwin, G. W. Yohe, A. M. Libertrau, C. T. Hunsaker, D. A. Bruns, D. L. DeAngelis, and J. M. Hales. 1990. Consequences of Climatic Change for the Human Environment. *Climate Research*. 1 (1): 63-79.
- Seuna, P. 1977. On the Hydro-Meteorological Factors Affecting Irrigation. Helsinki: Vesihallitus.
- Shrubsole, D. and R. Halliday. 2003. Water Management Study of Saskatchewan River Basin now Complete. *The River Current*. Accessed on September 19, 2005 at : http://www.saskriverbasin.ca/Newsletters/summer2003b.pdf 4 pp.

- Skogerboe, G. V. 1982. Planning Framework and Modeling of Water Quality from Rainfed Agricultural Lands. Water Supply & Management. 6 (5): 359-374.
- Sobool, D. and S. N. Kulshreshtha. 2003. Socio-Economic Database: South Saskatchewan River Basin (Saskatchewan and Alberta). A Report prepared for the Prairie Adaptation Research Colaborative. Department of Agricultural Economics, University of Saskatchewan: Saskatoon.
- Sobool, D., S.N. Kulshreshtha and K. Belcher. 2004. Valuation of Agricultural Benefits from Reduced Ozone Concentration in Canada: Assessment of Agricultural Crop Yield Inventory. Department of Agricultural Economics, Saskatoon, Saskatchewan, University of Saskatchewan.
- Spasic, L. 2002. Social Benefits Associated with Riparian Management Practices. Regina: Saskatchewan Wetland Conservation Corporation.
- Standing Senate Committee. 2003. Climate Change: We are at Risk. Senate Committee Final Report on Agriculture and Forestry.
- Statistics Canada. 2004. Special Tabulation. Marketing Division, Ottawa, Ontario.
- Statistics Canada. 2002. 2001 Community Profiles. Released June 27, 2002. Last Modified 2005-11-30. Statistics Canada Catalogue no. 93F0053XIE. Last accessed on March 22, 2006 at: http://www12.statcan.ca/english/Profil01/CP01/Index.cfm?Lang=E.
- Statistics Canada. 2005. *E-Stat for Education*. Accessed at: http://www.statcan.ca/english/Estat/licence.htm .
- Stockton, C.W. and W. R. Boggess. 1979. Geohydrological Implications of Climate Change on Water resource Development. Fort Belvoir, VA: US Army Coastal Engineering Research Center.
- Stone, J.C. and D. Whittington. 1983. Industrial Water Demands. Modeling Water Demands. J. Kindler and C.S. Russell (eds.). Vienna. International Systems for Applied Systems Analysis. 51-100.
- Sutherland, R.J. and R.G. Walsh. 1985. Effect of Distance on the Preservation Value of Water Quality. Land Economics. 61. (3): 282-291. EVRI Number: 85BB8.
- Tate, D., S. Renzetti and H. Shaw. 1992. *Economic Instruments for Water Pricing*. Social Science Series Number 26. Ottawa: Environment Canada.
- Titus, J.G. 1992. "The Costs of Climate Change to the United States". In S. K. Majumdar, B. Kalkstein, L. S. Yarnal, E. W. Miller, and L. M. Rosenfield (eds.). Global Climate Change: Implications, Challenges and Mitigation Measures, Philadelphia, PA: Pennsylvania Academy of Science.

- Turner K., S. Georgio, R. Clark and R. Brouwer. 2004. *Economic Valuation of Water Resources in Agriculture*. Rome, Italy: Information Division, Food and Agriculture Organization.
- UMA Engineering Ltd. 1990. Report prepared for Canada-Saskatchewan South Saskatchewan River Basin Study. The Demand for Water Based Recreation in the South Saskatchewan River.
- US Fish and Wildlife Service. 2001. 2001 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation: Fishing Highlights.
- USDA- United States Department of Agriculture. 2003. *Riparian Buffers for Agricultural Land*. Agroforestry notes. Accessed on May 16, 2005 at: http://waterhome.brc.tamus.edu/projects/afnote3.htm.
- Varian, H. 1992. Microeconomic Analysis. Third Edition. New York. N.Y.: Norton.
- Vaux, H.J. and R.E. Howitt. 1984. Managing Water Scarcity: an Evaluation of Interregional Transfers. *Water Resources Research*. 20: 785-792.
- Waggoner, P.E. (ed.). 1990. Climatic Change and Water Resources. Report on the AAAS Panel on Climatic Variability, Climate Change and the Planning and Management of U.S. Water Resources. New York: John Wiley and Sons.
- Ward, F., B. Raoch and J. Henderson. 1996. The Economic Value of Water in Recreation: Evidence from the California Drought. *Water Resources Research*. 32. (1): 1075-1081.
- Warrick, R. 1989. Report on Session IV: Expected Impacts. Carbon Dioxide and Other Greenhouse Gases: Climatic and Associated Impacts. R. Fantechi and A. Ghazi. (eds.). Brussels: Commission of the European Communities.
- Wheaton, E., V. Wittrock, S. N. Kulshreshtha, G. Koshida, C. Grant, A. Chipanski, B. Bonsal, P. Adkins, G. Bell, G. Brown, A. Howard and R. MacGregor. 2005. Lessons Learned from the Canadian Drought Years 2001 and 2002: Synthesis Report. Saskatoon: Agriculture and Agri-Food Canada.
- Williams, P. 1989. Adapting Water Resources Management to Global Climate Change. Climatic Change. 15: 83-93.
- Wittrock, V. 2004. An Assessment of the Vulnerability of Key Water Use Sectors in the South Saskatchewan River Basin (Alberta and Saskatchewan) to Changes in Water Supply Resulting from Climate Change. A Synthesis Report. Climatology, Environment and Minerals Division. SRC Publication Number 11759-2E04. Saskatoon: Saskatchewan Research Council.
- Wittrock, V. 2005a. Livestock Production in Western Canada: Impacts and Adaptations. In SRC Publication No. 11602-13E03. In E. Wheaton, S. Kulshreshtha and V. Wittrock (eds.),

2005. Canadian Droughts of 2001 and 2002: Climatology, Impacts and Adaptations. Volume II. SRC Publication No. 11602-1E03. Saskatoon: Saskatchewan Research Council.

- Wittrock, V. 2005b. "Crop Production in Western Canada: Impacts and Adaptation." In E. Wheaton, S. Kulshreshtha and V. Wittrock (eds.), 2005. Canadian Droughts of 2001 and 2002: Climatology, Impacts and Adaptations. Volume II. SRC Publication No. 11602-1E03. Saskatoon: Saskatchewan Research Council.
- WMO World Meteorological Organization. 1992. International Conference on Water and the Environment: Development Issues for the 21st Century. Report of the Conference. Held 26-31 January. Dublin, Ireland.
- World Health Organization. 1978. Malaria Control A Recognized Strategy. WHO Chronicle. 32(6): 226-230.
- Young, R.A. and S.L. Gray. 1972. Economic Value of Water: Concepts and Empirical Estimates. Ft. Collins, CO: Colorado State University.

APPENDICES

APPENDIX A

POPULATION DATA

	1.2					P	opulation					
SUB- BASIN	CLASSIF- ICATION	1951	1956	1961	1966	1971	1976	1981	1986	1991	1996 ²	2001 ²
RDR	URBAN	24,326	31,743	41,737	49,842	54,756	64,308	90,350	102,908	109,304	115,056	138,810
1.000	RURAL	72,766	69,959	69,791	65,622	61,893	63,440	66,967	80,347	68,688		92,240
1	FARM	55,616		46,790		39,318	32,487	31,513		30,940		41,549
BR	URBAN	142,453	203,910	286,423	339,912	414,317	483,842	628,240	671,710	753,647	822,122	950,004
	RURAL	29,347	27,601	27,111	24,533	26,381	30,764	36,841	41,016	38,432		49,489
	FARM	18,580		20,305		16,885	14,438	13,777		13,484		17,363
OR	URBAN	46,424	56,634	65,306	67,503	73,445	83,211	88,355	104,267	108,097	121,785	129,807
	RURAL	42,145	40,667	39,699	35,297	35,288	36,421	39,070	39,285	33,988	1.00	55,104
1.020	FARM	32,095	C 1	24,828		20,116	16,913	16,356		14,120		22,893
SSR- alta	URBAN	20,834	26,227	30,189	30,825	32,088	39,403	47,425	50,245	52,007	54,337	59,000
	RURAL	9,572	10,077	10,667	9,357	8,415	8,726	9,771	11,584	8,251	1	16,584
1.000	FARM	10,578	1.00	7,545		5,934	5,244	5,810		5,044		10,138
SSR-sk	URBAN	71,053	94,671	120,338	143,743	155,043	161,533	183,275	213,195	220,385	227,586	231,919
	RURAL	59,168	55,206	52,811	47,525	40,460	35,839	51,811	57,620	32,923		53,280
	FARM	48,653		39,657	1.2.1	30,577	26,204	29,187	1	24,196		39,157

Table A.1. Urban, rural and farm population statistics by sub-basin

Sobool and Kulshreshtha (2003)

Urban population estimated communities with a population of 1,000 or more

Farm population estimated using 1991 percentage of rural population located on farms

Table A.2. Price elasticities for residential consumption

Municipality Population	Price Elasticity
< 500 persons	-0.17
< 5,000 persons	-0.28
500 - 1,000 persons	-0.35
1,000 - 5,000 persons	-0.42
5,000-10,000 persons	-0.48
> 10,000 persons	-0.53

Source: Kulshrestha (1992)

APPENDIX B

LIVESTOCK WATER USE

	1		Water Use	(m ³ /year/a	nimal)					
PROVINCE	SUB- BASIN	ANIMAL	1951	1961	1971	1976	1986	1991	1996	2001
Alberta	RD	Bulls	259130	412102	549422	655297	572096	690161	854910	839548
		Calves	941334	1947242	2388089	2759140	2391418	2928788	3445482	4229707
1		Steers	723927	1810032	2476050	3405170	1905481	2305644	2926543	3191357
		Milk cows	2815053	2538387	1618511	1491308	1259793	1184214	1267494	1206908
		Beef cows	3618464	6763631	9302022	11139707	6266972	7520823	9371693	10341836
		Hens and Chickens	151231	154293	134345	143615	130920	129734	126789	190737
		Other poultry	14131	39838	34588	32664	6290	6600	6527	5462
		Sheep	74367	100745	48529	37667	36210	83357	52252	63866
		Horses	1127821	568229	498659	497641	705384	577686	708657	769337
		Pigs	390668	504438	709641	391158	902103	986310	925136	1237382
	BR	Bulls	94226	187283	247303	274428	230668	265924	324830	290826
		Calves	335886	803146	973277	1068509	811822	1000225	1313196	1605809
		Steers	347040	981442	1258880	1551512	643531	920609	1194968	1815396
		Milk cows	754844	1002505	607799	550689	359367	334711	320358	204354
1		Beef cows	1517746	3002905	3937562	4434873	2143188	2607297	3293895	3286847
		Hens and Chickens	54514	91967	90933	97582	99097	107494	95280	107722
		Other poultry	5603	25967	24916	22589	3557	3616	3432	3045
		Sheep	36465	52108	26662	19116	18419	33961	26400	26838
	1	Horses	304293	249143	228294	221444	270960	235368	322465	357407
		Pigs	106482	193964	269131	156471	170220	329794	186382	364853
	OR	Bulls	144614	248861	335333	367591	402312	441768	564114	469888
1	1	Calves	512674	1026502	1375478	1474415	1570055	1878549	2514154	2974963
			Water Use	(m ³ /year/a)	nimal)					
PROVINCE	SUB- BASIN	ANIMAL	1951	1961	1971	1976	1986	1991	1996	2001
	1	Steers	685961	1157456	1619586	2470353	1941314	3156356	4835008	6720204
	1	Milk cows	873953	881654	614263	583685	1006483	916442	959939	889881

Table B.1. Annual Livestock Water Use based on Province and Sub – Basin

		Beef cows	2567941	4011543	5556410	6285849	4067768	4843335	6136588	5742730
		Hens and Chickens	73029	77875	78252	86730	152498	165447	171850	233429
		Other poultry	10364	28052	27332	25334	7853	12709	10627	11952
		Sheep	103493	206819	106294	68657	73143	52301	78228	75795
		Horses	498808	318068	265698	251178	404318	362446	611867	387023
		Pigs	126137	196874	307837	212412	440304	495413	695532	880623
	SSR	Bulls	46529	106761	136895	161151	184713	195670	245784	210730
		Calves	216011	502377	576224	628667	742234	822950	945947	1095453
-		Steers	192531	301421	360744	516407	661409	913089	1511814	1977927
	1	Milk cows	329503	268796	144797	109216	305510	283214	274628	276680
		Beef cows	980606	1851560	2318223	2434135	1949038	2138612	2537903	2411168
		Hens and Chickens	24092	20881	15995	16755	44243	43928	44724	59526
		Other poultry	3019	5716	4551	3256	3512	5041	5322	6176
		Sheep	65766	52831	10287	7610	8579	15066	16499	19308
		Horses	176818	89476	78406	78183	86870	104418	90661	92611
		Pigs	0	33993	53011	34098	120930	137066	241850	298997
Saskatchewan	SSR	Bulls	87427	163276	214832	280766	273027	314023	401137	397476
		Calves	348697	755693	925507	1082129	1144157	1297676	1583265	1841408
		Steers	253977	551711	563181	794404	637399	776941	797108	555628
		Milk cows	1529643	1173890	641412	542876	623476	576111	496131	441357
		Beef cows	1246583	2627299	3515773	4240097	2999457	3466524	4497603	4780225
		Hens and Chickens	95360	77689	58467	53163	72045	73428	74658	109309
		Other poultry	10562	28292	22661	17772	4864	7070	3542	4496
		Sheep	45637	43464	33114	22564	15282	18280	22158	33422
		Horses	649837	262298	170240	131273	257855	207048	212438	238800
		Pigs	150858	176343	340906	177657	306506	395705	430598	504247

Source: Sobool and Kulshreshtha (2003)

APPENDIX C

PARK VISITATION DATA

ANDIO CITI THEOTICE	A I OVIMEIGI	V ISIGHELVII	Deserveres !	T TO CHET T CO	ALL TRULES T	to man en o	1)			
	1993/94	1994/95	1995/96	1996/97	1997/98	1998/99	1999/00	2000/01	2001/02	2002/03
CAMPING										
Occupied campsite nights	453,176	498,533	483,667	489,739	512,301	522,940	517,671	450,692	488,972	473,940
Campers	1,486,690	1,621,043	1,559,081	1,581,681	1,650,133	1,682,987	1,658,784	1,451,906	1,570,768	1,517,067
Number of campsites	13,251	12,775	12,789	12,471	13,079	13,320	13,383	13,110	13,124	13,248
Average camping party size	3.2	3.2	3.0	3.2	3.2	3.2	3.2	3.2	3.2	3.2
GROUP CAMPING										
Group unit nights	28,244	27,830	37,108	28,309	28,058	24,550	21,546	22,227	20,888	28,780
Group campers	93,161	92,823	123,768	94,443	93,220	84,287	73,459	76,038	72,022	97,301
Average group camping party size	3.3	3.3	3.3	3.3	3.4	3.4	3.3	3.4	3.4	3.4
DAY USE							-			
Day use party visits	2,838,818	2,780,349	2,552,280	2,723,050	2,555,300	2,617,790	2,610,063	2,571,904	2,457,908	2,434,465
Day use visitors	7,258,239	6,987,767	6,598,503	7,101,787	6,575,563	6,705,994	6,656,029	6,968,480	6,704,861	6,628,354
Average day use party size	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.7	2.7	2.7
SUB-TOTAL VISITATION	N			1						
Parties	3,320,238	3,306,712	3,073,055	3,241,098	3,095,659	3,165,280	3,149,280	3,044,823	2,967,768	2,937,185
Visitors	8,838,090	8,701,633	8,281,352	8,777,911	8,318,916	8,463,268	8,388,272	8,496,424	8,347,651	8,242,722
FIXED ROOF			1	11-1-1-1		1		10	1	1
Occupied room nights	102,032	106,300	103,562	82,825	41,093	97,035	95,686	116,909	116,776	3,815
Guests	204,374	213,485	204,107	174,832	170,189	198,717	193,571	233,818	238,032	15,641
TOTAL VISITATION			1							1.00
Parties	3,442,270	3,413,012	3,176,617	3323923	3,136,752	3,262,315	3,244,966	3,161,732	3,084,544	2,941,000
Visitors	9,042,464	8,915,118	8,485,459	8952748	8,489,105	8,661,985	8,581,843	8,730,241	8,585,682	8,258,363

 Table C.1.
 Alberta Provincial Visitation Statistics (Fiscal Year: April 1 to March 31)

Source: Saskatchewan Parks Outdoor Recreation and Visitation Statistical Use Report (2004). Only the parks Along the SSRB are listed.

Provincial Park - Campground, Group use area, or Day use area	Number of Campsites	Occupied Campsite Nights	Overflow Unit Nights	Campers	Group Unit Nights	Group Campers	Day Use Party Visits	Day Use Visitors	Total Parties	Total Visitors
Aspen Beach -Lakeview -Brewers Beach -Ebeling Beach -Aspen Beach A -Aspen Beach B -Aspen Beach C -Aspen Beach D -Aspen Beach E -Aspen Beach F TOTAL	280 306 586	12,846 14,725 27,571		44,274 50,996 95,270	314 227 292 112 199 167 1,311	973 704 905 347 617 518 4,06 4	55,780 55,780	168,986 169,986	84,662	268,320
Beauvais Lake	85	3,098		9,448	191	688	ND	ND	3,289	10,136
Bow Valley -Willow Rock -Bow Valley -Jewel Bay Backcountry -Elk Flats -Canoe Meadows -Porcupine -Grouse -Old Church Camp: Owl TOTAL	124 169 9 302	4,277 19,684 241 24,202		11,482 58,241 1,068 70,791	317 1,700 759 691 673 4,140	1,242 5,270 2,976 2,695 2,221 14,404	62,620	156,550	90,962	241,745
Bow Valley Wildland -Quaite Valley Backcountry	20	345		1,188			3.250	8,125	3,595	9.313
Kinbrook Island	166	11.361		38.627	365	1.424	ND	ND	11,726	40.051
Little Bow -Deer Coulee -Little Bow TOTAL	205	ND		ND	ND ND ND	ND ND ND	ND	ND	ND	ND

 Table C.2.
 Visitation Summary by Alberta Provincial Park-April 1, 2002 to October 31, 2002.

Provincial Park - Campground, Group use area, or Day use area	Number of Campsites	Occupied Campsite Nights	Overflow Unit Nights	Campers	Group Unit Nights	Group Campers	Day Use Party Visits	Day Use Visitors	Total Parties	Total Visitors
Little Fish Lake	14	197		689			400	1,148	597	1,837
Park Lake -Park Lake: A -Park Lake: B -Park Lake: Main Area -Park Lake: Boat					162 130	437 312				
Launch	10	803		3 1 3 1	202	740	ND	ND	1 104	2.000
TOTAL Derrichter Dieser	48	3 647		3,131	150	/49	6 360	17 200	1,104	3,880
Pembina River	152	3,047		10,730	159	493	0,430	17,409	10,050	20,440
Peter Lougheed Park			1000	1.1			1			10.00
-Canyon	52	2,019		6,270						
-William Watson	20	421		1,176						
-Elkwood	130	7,211		24,517						
-Boulton Creek	118	7,036		22,971	005	0.600				
-Lower Lake	104	2,955		9,829	895	2,396				
-Mount Sarrail -Interlakes	44 48	4,100		3,231						
-Elbow Lake										
Backcountry	15	380		1,381						
-Point Backcountry	20	880		3,568						
-Forks Backcountry	15	533		2,108						
-Three Island Lake Backcountry	16	373		1,308						
-Turbine Canyon Backcountry	12	301		1,086						
-Aster Lake Backcountry	5	186		732	580	1 566				
-Pocaterra	601	27.560		91,060	1.475	4,162	45.390	118.014	74.425	213.236
TOTAL	120	4 312		16.047	.,	1,102	4 020	15 412	8 332	30 450
Ked Lodge	120	4,314		13,04/			9,040	13,414 ND	6,002 # 000	14.026
Tilebrook	120	5,998		14,930			ND	ND	3,998	14,930
Willow Creek	40	1,037		5,575			ND	ND	1,037	5,575
Woolford	30	130		447	59	230	ND	ND	189	677

Provincial Park Campground, Group use area, or Day use area	Number of Campsites	Occupied Campsite Nights	Overflow Unit Nights	Campers	Group Unit Nights	Group Campers	Day Use Party Visits	Day Use Visitors	Total Parties	Total Visitors
Wyndham- Carseland -Carseland: A -Carseland: B -Carseland: C -Wyndham: Main Wyndham:					484 ND ND	1,888 ND ND	ND	ND		
-Wyndham: Johnson Island -Wyndham: Weir TOTAL	196	3,580		11,495	484	1,888	ND ND ND	ND ND ND	4,064	13,383

Source: Saskatchewan Parks Outdoor Recreation and Visitation Statistical Use Report (2004). Only the parks Along the SSRB are listed.

Location and Permit	1999	2000	2001	2002	2003	2004
Douglas						
Regular	7,210	6,936	6,750	6,692	7,220	4,075
Reservation						2,696
Monthly		210	210	450	570	1,470
Seasonal	4,070	3,850	3,465	3,300	3,245	0
Self-Registration	145	159	210	140	250	167
School/youth group	218	343	233	272	200	168
Total Permit Days	11,644	11,498	10,868	10,854	11,485	8,576
Saskatchewan Landing						
Regular	6,627	6,196	7,091	6,601	9,144	7,440
Reservation						1,097
Monthly		180	450	960	360	810
Seasonal	7,590	7,370	7,700	6,490	5,610	5,555
Self-Registration	228	431	387	321	375	219
School/youth group	191	73	307	138	57	108
Total Permit Days	14,636	14,252	15,935	14,510	15,546	15,229
Blackstrap						
Regular					2	-4
Monthly			90	30		240
Seasonal	220	220	440	110	605	440
Self-Registration	1,448	1,389	1,455	1,656	1,779	1,311
School/youth group	30					0
Total Permit Days	1,698	1,609	1,985	1,796	2,386	1,987
Danielson						
Regular			646	1,311	1,328	1,240
Monthly			60	90	60	0
Seasonal	1,045	990	2,090	2,035	2,640	2,695
Self-Registration	2,201	2,168	1,612	635	880	608
School/youth group		50		53	50	42
Total Permit Days	3,246	3,208	4,408	4,124	4,964	4,585

Table C.3. Camping Permit Days by Park Classification in Saskatchewan SSRB

Source: Saskatchewan Parks Outdoor Recreation and Visitation Statistical Use Report (2004).

Location	1990 Multiplier	2003 Multiplier	% Change from 1990 to 2003
Blackstrap	3.7	3.7	0.0%
Buffalo Pound	3.6	3.6	0.0%
Candle Lake	3.6	3.6	0.0%
Cypress Hills	3.4	3.2	-5.9%
Douglas	3.4	3.4	0.0%
Duck Mountain	3.3	3.6	9.1%
Echo Valley	3.8	3.2	-15.8%
Good Spirit Lake	3.7	3.5	-5.4%
Greenwater Lake	3.6	3.5	-2.8%
Makwa Lake	3.7	3.5	-5.4%
Meadow Lake	4.4	3.6	-18.2%
Moose Mountain	3.6	4.0	11.1%
Pike Lake	3.8	3.8	0.0%
Rowan's Ravine	3.4	3.4	0.0%
Saskatchewan Landing	3.2	2.9	-9.4%
The Battlefords	3.7	3.4	-8.1%
Emma Lake Rec. Site	3.5	3.5	0.0%
Chitek Lake Rec. Site	-	3.2	0.0%
Overall Average/Totals	3.6	3.5	-3.7%

Table C.4. Economic impact multipliers for recreation site visits in Saskatchewan

Source: Saskatchewan Parks Outdoor Recreation and Visitation Statistical Use Report (2004). Not all sites could be accounted for with the data available.

 Table C.5.
 Expenditure on Nature Based Activities for Residents of Alberta (1996)

Category of Expenditure	Outdoor Activities		Wildlife Viewing		Recreational Fishing		Hunting Wildlife		Other Nature Related Activities
	\$ Million	%	\$ Million	%	S Million	%	S Million	%	S Million
Accommodation	135.3	15.0	4.4	2.6	7.4	5.0	1.8	2.5	
Transportation	229.0	25.4	15.8	9.2	35.0	23.7	20.2	28.5	
Food	183.2	20.3	9.5	5.5	23.5	15.9	7.2	10.1	
Equipment	293.6	32.6	2	02 7	50.9	34.4	29.0	40.8	
Other Items	60.5	7.7	}142	82.1	31.0	21.0	13.0	18.3	
Costs for Other Activities									70.2
Total (\$)	901	100	171.6	100	147.8	100	71.0	100	70.2
Average Yearly	\$836		\$433		\$409		\$843		
Average Daily	\$56		\$23		\$22		\$51		

Source: Statistics Canada. The Importance of Nature to Canadians: The Economic Significance of Nature Related Activities. 2000. P. 32

Category of Expenditure	Outdoor Activities		Wildlife Viewing		Recreational Fishing		Hunting Wildlife		Other Nature Related Activities
	S Million	%	S Million	%	S Million	%	S Million	%	\$ Million
Accommodation	37.3	14.1	1	17.0	5.7	6.0	1.0		
Transportation	63.3	24.0	36.7	17.0	15.5	16.2	9.0		
Food	50.8	19.3			9.2	9.6	4.4		
Equipment	97.0	36.8	326	83.0)	682	3.000 5	57 7	
Other Items	15.3	5.8) 52.0	1. 191	365.0	00.2	319.3	51.2	
Costs for Other Activities									22.2
Total (\$)	263.7	100.0	39.3	100.0	95.4	100.0	33.7	100.0	22.2
Average Yearly	763		344		557		723		
Average Daily	49	1.000	17		29		45		

Table C.6.Expenditure on Nature Based Activities by Residence of
Saskatchewan (1996)

Source: Statistics Canada. The Importance of Nature to Canadians: The Economic Significance of Nature Related Activities. 2000. P. 30