



Figure D1 Battle River: Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 10.68
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 8 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 10.68
Adjusted Kruskal-Wallis statistic (H') = 10.68



Figure D2 Battle River: Oxygen Dissolved



Figure D3 Battle River: Oxygen Dissolved



Figure D4 Battle River: pH-Field

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 101.1

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 44 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal.

Kruskal-Wallis statistic (H) = 101.1

Adjusted Kruskal-Wallis statistic (H') = 101.1



Figure D5 Battle River: pH-Field



Figure D6 Battle River: pH-Field



Figure D7 Battle River: Sodium Adsorption Ratio

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 55.29

Calculated Kruskal-Wallis statistic = 55.29

Adjusted Kruskal-Wallis statistic (H) = 55.29

Adjusted Kruskal-Wallis statistic (H) = 55.29



Figure D8 Battle River: Sodium Adsorption Ratio



Figure D9 Battle River: Sodium Adsorption Ratio



Figure D10 Battle River: Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 14.96
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 14 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 14.96

Adjusted Kruskal-Wallis statistic (H') = 14.96



Figure D11 Battle River: Total Suspended Solids



Figure D12 Battle River: Total Suspended Solids



Figure D13 Beaver River: Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 30.59
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 4 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 30.59
Adjusted Kruskal-Wallis statistic (H') = 30.59



Figure D14 Beaver River: Oxygen Dissolved



Figure D15 Beaver River: Oxygen Dissolved



Figure D16 Beaver River: pH-Field

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 92.1

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 42 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 92.1 Adjusted Kruskal-Wallis statistic (H') = 92.1



Figure D17 Beaver River: pH-Field



Figure D18 Beaver River: pH-Field



Figure D19 Beaver River: Sodium Adsorption Ratio

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 3.435
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 18 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 3.435 Adjusted Kruskal-Wallis statistic (H') = 3.435



Figure D20 Beaver River: Sodium Adsorption Ratio



Figure D21 Beaver River: Sodium Adsorption Ratio



Figure D22 Beaver River: Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 6.254

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 6 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 6.254 Adjusted Kruskal-Wallis statistic (H') = 6.254



Figure D23 Beaver River: Total Suspended Solids



Figure D24 Beaver River: Total Suspended Solids



Figure D25 Cold River: Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 10.43
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 10.43 Adjusted Kruskal-Wallis statistic (H') = 10.43



Figure D26 Cold River: Oxygen Dissolved



Figure D27 Cold River: Oxygen Dissolved



Figure D28 Cold River: pH-Field

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 6.305
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were I groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 6.305

Adjusted Kruskal-Wallis statistic (H') = 6.305



Figure D29 Cold River: pH-Field



Figure D30 Cold River: pH-Field



Figure D31 Cold River: Sodium Adsorption Ratio

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 10.99

Calculated Kruskal-Wallis statistic (H) = 10.99

Adjusted Kruskal-Wallis statistic (H) = 10.99

Adjusted Kruskal-Wallis statistic (H) = 10.99



Figure D32 Cold River: Sodium Adsorption Ratio



Figure D33 Cold River: Sodium Adsorption Ratio



Figure D34 Cold River: Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 18

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were I groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 18 Adjusted Kruskal-Wallis statistic (H') = 18



Figure D35 Cold River: Total Suspended Solids



Figure D36 Cold River: Total Suspended Solids



Figure D37 North Saskatchewan River: Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season.

Calculated Kruskal-Wallis statistic = 0.6381

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 17 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.638 Adjusted Kruskal-Wallis statistic (H') = 0.6381



Figure D38 North Saskatchewan River: Oxygen Dissolved



Figure D39 North Saskatchewan River: Oxygen Dissolved



Figure D40 North Saskatchewan River: pH-Field

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 47.02
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 20 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 47.02 Adjusted Kruskal-Wallis statistic (H') = 47.02



Figure D41 North Saskatchewan River: pH-Field



Figure D42 North Saskatchewan River: pH-Field



Figure D43 North Saskatchewan River: Sodium Adsorption Ratio

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 0.3306
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 8 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.3306 Adjusted Kruskal-Wallis statistic (H') = 0.3306



Figure D44 North Saskatchewan River: Sodium Adsorption Ratio



Figure D45 North Saskatchewan River: Sodium Adsorption Ratio



Figure D46 North Saskatchewan River: Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 2.193

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 9 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 2.193

Adjusted Kruskal-Wallis statistic (H') = 2.193



Figure D47 North Saskatchewan River: Total Suspended Solids



Figure D48 North Saskatchewan River: Total Suspended Solids



Figure D49 Red Deer River (AB-SK): Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 15.95

Calculated Kruskal-Wallis statistic = 15.95

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 21 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 15.95

Adjusted Kruskal-Wallis statistic (H') = 15.95



Figure D50 Red Deer River (AB-SK): Oxygen Dissolved



Figure D51 Red Deer River (AB-SK): Oxygen Dissolved



Figure D52 Red Deer River (AB-SK): pH-Field

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 14.86
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 67 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 14.86 Adjusted Kruskal-Wallis statistic (H') = 14.86



Figure D53 Red Deer River (AB-SK): pH-Field



Figure D54 Red Deer River (AB-SK): pH-Field



Figure D55 Red Deer River (AB-SK): Sodium Adsorption Ratio

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 0.06004

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 17 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 0.06004

Adjusted Kruskal-Wallis statistic (H') = 0.06004



Figure D56 Red Deer River (AB-SK): Sodium Adsorption Ratio



Figure D57 Red Deer River (AB-SK): Sodium Adsorption Ratio



Figure D58 Red Deer River (AB-SK): Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 20.29

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 51 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 20.29 Adjusted Kruskal-Wallis statistic (H') = 20.29



Figure D59 Red Deer River (AB-SK): Total Suspended Solids



Figure D60 Red Deer River (AB-SK): Total Suspended Solids



Figure D61 South Saskatchewan River: Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 108.3
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 46 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 108.3 Adjusted Kruskal-Wallis statistic (H') = 108.3



Figure D62 South Saskatchewan River: Oxygen Dissolved



Figure D63 South Saskatchewan River: Oxygen Dissolved



Figure D64 South Saskatchewan River: pH-Field

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 62.63
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 54 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 62.63 Adjusted Kruskal-Wallis statistic (H') = 62.63



Figure D65 South Saskatchewan River: pH-Field



Figure D66 South Saskatchewan River: pH-Field



Figure D67 South Saskatchewan River: Sodium Adsorption Ratio

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 44.75
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 9 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 44.75 Adjusted Kruskal-Wallis statistic (H') = 44.75



Figure D68 South Saskatchewan River: Sodium Adsorption Ratio



Figure D69 South Saskatchewan River: Sodium Adsorption Ratio



Figure D70 South Saskatchewan River: Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 49.56
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 15 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 49.56 Adjusted Kruskal-Wallis statistic (H') = 49.56



Figure D71 South Saskatchewan River: Total Suspended Solids



Figure D72 South Saskatchewan River: Total Suspended Solids



Figure D73 Assiniboine River: Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 16.92

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 19 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 16.92 Adjusted Kruskal-Wallis statistic (H') = 16.92



Figure D74 Assiniboine River: Oxygen Dissolved



Figure D75 Assiniboine River: Oxygen Dissolved



Figure D76 Assiniboine River: pH-Field

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 97.26
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 76 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 97.26 Adjusted Kruskal-Wallis statistic (H') = 97.26



Figure D77 Assiniboine River: pH-Field



Figure D78 Assiniboine River: pH-Field



Figure D79 Assiniboine River: Sodium Absorption Ratio

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 4.123
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

radiuated Cnt-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level. There were 13 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 4.123

Adjusted Kruskal-Wallis statistic (H') = 4.123



Figure D80 Assiniboine River: Sodium Adsorption Ratio



Figure D81 Assiniboine River: Sodium Adsorption Ratio



Figure D82 Assiniboine River: Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 84.93

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 24 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 84.93 Adjusted Kruskal-Wallis statistic (H') = 84.93



Figure D83 Assiniboine River: Total Suspended Solids



Figure D84 Assiniboine River: Total Suspended Solids



Figure D85 Carrot River: Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 53.86

Calculated Kruskal-Wallis statistic = 53.86

Calculated Kruskal-Wallis statistic = 53.86

Adjusted Kruskal-Wallis statistic (H) = 53.86

Adjusted Kruskal-Wallis statistic (H) = 53.86



Figure D86 Carrot River: Oxygen Dissolved



Figure D87 Carrot River: Oxygen Dissolved



Figure D88 Carrot River: pH-Field

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 76.02

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 49 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 76.02 Adjusted Kruskal-Wallis statistic (H') = 76.02



Figure D89 Carrot River: pH-Field



Figure D90 Carrot River: pH-Field



Figure D91 Carrot River: Sodium Absorption Ratio

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 43.87

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 17 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 43.87

Adjusted Kruskal-Wallis statistic (H') = 43.87



Figure D92 Carrot River: Sodium Adsorption Ratio



Figure D93 Carrot River: Sodium Adsorption Ratio



Figure D94 Carrot River: Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 29.95
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 5 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 29.95 Adjusted Kruskal-Wallis statistic (H') = 29.95



Figure D95 Carrot River: Total Suspended Solids



Figure D96 Carrot River: Total Suspended Solids



Figure D97 Churchill River: Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 92.15

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 11 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 92.15

Adjusted Kruskal-Wallis statistic (H') = 92.15



Figure D98 Churchill River: Oxygen Dissolved



Figure D99 Churchill River: Oxygen Dissolved



Figure D100 Churchill River: pH-Field

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 0.06344

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 21 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.06344

Adjusted Kruskal-Wallis statistic (H') = 0.06344



Figure D101 Churchill River: pH-Field



Figure D102 Churchill River: pH-Field



Figure D103 Churchill River: Sodium Absorption Ratio

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season.

Calculated Kruskal-Wallis statistic = 17.97

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 17 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 17.97 Adjusted Kruskal-Wallis statistic (H') = 17.97



Figure D104 Churchill River: Sodium Adsorption Ratio



Figure D105 Churchill River: Sodium Adsorption Ratio



Figure D106 Churchill River: Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 115
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 11 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 115 Adjusted Kruskal-Wallis statistic (H') = 115



Figure D107 Churchill River: Total Suspended Solids



Figure D108 Churchill River: Total Suspended Solids



Figure D109 Qu'Appelle River: Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 6.723
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 42 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 6.723

Adjusted Kruskal-Wallis statistic (H') = 6.723



Figure D110 Qu'Appelle River: Oxygen Dissolved



Figure D111 Qu'Appelle River: Oxygen Dissolved



Figure D112 Qu'Appelle River: pH-Field

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 21.61
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 58 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 21.61 Adjusted Kruskal-Wallis statistic (H') = 21.61



Figure D113 Qu'Appelle River: pH-Field



Figure D114 Qu'Appelle River: pH-Field



Figure D115 Qu'Appelle River: Sodium Absorption Ratio

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 5.329
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

Taunated Cin-squared value = 5.341 with 1 degrees of freedom at the 5% significance level. There were 18 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 5.329

Adjusted Kruskal-Wallis statistic (H') = 5.329



Figure D116 Qu'Appelle River: Sodium Adsorption Ratio



Figure D117 Qu'Appelle River: Sodium Adsorption Ratio



Figure D118 Qu'Appelle River: Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 195
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 10 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 195 Adjusted Kruskal-Wallis statistic (H') = 195



Figure D119 Qu'Appelle River: Total Suspended Solids



Figure D120 Qu'Appelle River: Total Suspended Solids



Figure D121 Red Deer River (MB-SK): Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 13.96
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 26 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 13.96 Adjusted Kruskal-Wallis statistic (H') = 13.96



Figure D122 Red Deer River (SK-MB): Oxygen Dissolved



Figure D123 Red Deer River (SK-MB): Oxygen Dissolved



Figure D124 Red Deer River (MB-SK): pH-Field

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 54.63
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 22 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 54.63 Adjusted Kruskal-Wallis statistic (H') = 54.63



Figure D125 Red Deer River (SK-MB): pH-Field



Figure D126 Red Deer River (SK-MB): pH-Field



Figure D127 Red Deer River (MB-SK): Sodium Absorption Ratio

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season.

Calculated Kruskal-Wallis statistic = 1.326
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 11 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 1.326 Adjusted Kruskal-Wallis statistic (H') = 1.326



Figure D128 Red Deer River (SK-MB): Sodium Adsorption Ratio



Figure D129 Red Deer River (SK-MB): Sodium Adsorption Ratio



Figure D130 Red Deer River (MB-SK): Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 11.74

Carculated Krussal-Wallis statistic (H') as 41 with 1 degrees of freedom at the 5% significance level. There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 11.74

Adjusted Kruskal-Wallis statistic (H') = 11.74



Figure D131 Red Deer River (SK-MB): Total Suspended Solids



Figure D132 Red Deer River (SK-MB): Total Suspended Solids



Figure D133 Saskatchewan River: Oxygen Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 40.66
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 28 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 40.66

Adjusted Kruskal-Wallis statistic (H') = 40.66



Figure D134 Saskatchewan River: Oxygen Dissolved



Figure D135 Saskatchewan River: Oxygen Dissolved



Figure D136 Saskatchewan River: pH-Field

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 13.83

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 49 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 13.83 Adjusted Kruskal-Wallis statistic (H') = 13.83



Figure D137 Saskatchewan River: pH-Field



Figure D138 Saskatchewan River: pH-Field



Figure D139 Saskatchewan River: Sodium Absorption Ratio

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 39.17

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 23 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 39.17 Adjusted Kruskal-Wallis statistic (H') = 39.17



Figure D140 Saskatchewan River: Sodium Adsorption Ratio



Figure D141 Saskatchewan River: Sodium Adsorption Ratio



Figure D142 Saskatchewan River: Total Suspended Solids

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 183.4

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 183.4 Adjusted Kruskal-Wallis statistic (H') = 183.4



Figure D143 Saskatchewan River: Total Suspended Solids



Figure D144 Saskatchewan River: Total Suspended Solids